Serre Weights for Quaternion Algebras
نویسنده
چکیده
We study the possible weights of an irreducible 2-dimensional mod p representation of Gal(F/F ) which is modular in the sense of that it comes from an automorphic form on a definite quaternion algebra with centre F which is ramified at all places dividing p, where F is a totally real field. In most cases we determine the precise list of possible weights; in the remaining cases we determine the possible weights up to a short and explicit list of exceptions.
منابع مشابه
Supersingular Locus of Hilbert Modular Varieties, Arithmetic Level Raising, and Selmer Groups
This article has three goals. First, we generalize the result of Deuring and Serre on the characterization of supersingular locus to all Shimura varieties given by totally indefinite quaternion algebras over totally real number fields. Second, we generalize the result of Ribet on arithmetic level raising to such Shimura varieties in the inert case. Third, as an application to number theory, we ...
متن کاملLiftings of Reduction Maps for Quaternion Algebras
We construct liftings of reduction maps from CM points to supersingular points for general quaternion algebras and use these liftings to establish a precise correspondence between CM points on indefinite quaternion algebras with a given conductor and CM points on certain corresponding totally definite quaternion algebras.
متن کاملA brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices
The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...
متن کاملHodge-theoretic obstruction to the existence of quaternion algebras
This paper gives a necessary criterion in terms of Hodge theory for representability by quaternion algebras of certain 2-torsion classes in the unramified Brauer group of a complex function field. This criterion is used to give examples of threefolds with unramified Brauer group elements which are the classes of biquaternion division algebras. DOI: https://doi.org/10.1112/S0024609302001546 Post...
متن کاملOn quaternionic functional analysis
In this article, we will show that the category of quaternion vector spaces, the category of (both one-sided and two sided) quaternion Hilbert spaces and the category of quaternion B∗-algebras are equivalent to the category of real vector spaces, the category of real Hilbert spaces and the category of real C∗-algebras respectively. We will also give a Riesz representation theorem for quaternion...
متن کامل