Topographic-specific axon branching controlled by ephrin-As is the critical event in retinotectal map development.
نویسندگان
چکیده
The retinotectal projection is the predominant model for studying molecular mechanisms controlling development of topographic axonal connections. Our analyses of topographic mapping of retinal ganglion cell (RGC) axons in chick optic tectum indicate that a primary role for guidance molecules is to regulate topographic branching along RGC axons, a process that imposes unique requirements on the molecular control of map development. We show that topographically appropriate connections are established exclusively by branches that form along the axon shaft. Initially, RGC axons overshoot their appropriate termination zone (TZ) along the anterior-posterior (A-P) tectal axis; temporal axons overshoot the greatest distance and nasal axons the least, which correlates with the nonlinear increasing A-P gradient of ephrin-A repellents. In contrast, branches form along the shaft of RGC axons with substantial A-P topographic specificity. Topography is enhanced through the preferential arborization of appropriately positioned branches and elimination of ectopic branches. Using a membrane stripe assay and time-lapse microscopy, we show that branches form de novo along retinal axons. Temporal axons preferentially branch on their topographically appropriate anterior tectal membranes. After the addition of soluble EphA3-Fc, which blocks ephrin-A function, temporal axons branch equally on anterior and posterior tectal membranes, indicating that the level of ephrin-As in posterior tectum is sufficient to inhibit temporal axon branching and generate branching specificity in vitro. Our findings indicate that topographic branch formation and arborization along RGC axons are critical events in retinotectal mapping. Ephrin-As inhibit branching along RGC axons posterior to their correct TZ, but alone cannot account for topographic branching and must cooperate with other molecular activities to generate appropriate mapping along the A-P tectal axis.
منابع مشابه
Ephrin-A5 restricts topographically specific arborization in the chick retinotectal projection in vivo.
The retinotectal map is the best characterized model system to study how axons respond to guidance cues during the formation of the nervous system. Recent studies have shown that the critical event in forming this map is topographic-specific axon branching. To elucidate the in vivo role of the repulsive cue ephrin-A5 in this event, we used chromophore-assisted laser inactivation (CALI) to gener...
متن کاملRegulation of axial patterning of the retina and its topographic mapping in the brain.
Topographic maps are a fundamental organizational feature of axonal connections in the brain. A prominent model for studying axial polarity and topographic map development is the vertebrate retina and its projection to the optic tectum (or superior colliculus). Linked processes are controlled by molecules that are graded along the axes of the retina and its target fields. Recent studies indicat...
متن کاملEphA3 Expressed in the Chicken Tectum Stimulates Nasal Retinal Ganglion Cell Axon Growth and Is Required for Retinotectal Topographic Map Formation
BACKGROUND Retinotopic projection onto the tectum/colliculus constitutes the most studied model of topographic mapping and Eph receptors and their ligands, the ephrins, are the best characterized molecular system involved in this process. Ephrin-As, expressed in an increasing rostro-caudal gradient in the tectum/colliculus, repel temporal retinal ganglion cell (RGC) axons from the caudal tectum...
متن کاملVisual map development: bidirectional signaling, bifunctional guidance molecules, and competition.
Topographic maps are a two-dimensional representation of one neural structure within another and serve as the main strategy to organize sensory information. The retina's projection via axons of retinal ganglion cells to midbrain visual centers, the optic tectum/superior colliculus, is the leading model to elucidate mechanisms of topographic map formation. Each axis of the retina is mapped indep...
متن کاملLoss-of-function analysis of EphA receptors in retinotectal mapping.
EphA tyrosine kinases are thought to act as topographically specific receptors in the well-characterized projection map from the retina to the tectum. Here, we describe a loss-of-function analysis of EphA receptors in retinotectal mapping. Expressing patches of a cytoplasmically truncated EphA3 receptor in chick retina caused temporal axons to have reduced responsiveness to posterior tectal rep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 21 21 شماره
صفحات -
تاریخ انتشار 2001