Viscous-slip, thermal-slip, and temperature-jump coefficients based on the linearized Boltzmann equation (and five kinetic models) with the Cercignani–Lampis boundary condition

نویسنده

  • R.D.M. Garcia
چکیده

A polynomial expansion procedure and the ADO (analytical discrete-ordinates) method are used to compute the viscous-slip coefficient, the thermal-slip coefficient, and the temperature-jump coefficient from the linearized Boltzmann equation (LBE) for rigid-sphere interactions and the Cercignani–Lampis (CL) boundary condition. These same quantities are also computed from five kinetic models, with the CL condition, and compared to the LBE result. Equivalent results for the LBE and the kinetic models, all based on the usual Maxwell boundary condition, are also reported. © 2010 Elsevier Masson SAS. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Viscous-slip, thermal-slip, and temperature-jump coefficients as defined by the linearized Boltzmann equation and the Cercignani–Lampis boundary condition

A polynomial expansion procedure and an analytical discrete-ordinates method are used to evaluate the viscous-slip coefficient, the thermal-slip coefficient, and the temperature-jump coefficient as defined by a rigorous version of the linearized Boltzmann equation for rigid-sphere interactions and the Cercignani–Lampis boundary condition. © 2003 American Institute of Physics. @DOI: 10.1063/1.15...

متن کامل

Higher order slip according to the linearized Boltzmann equation with general boundary conditions.

In the present paper, we provide an analytical expression for the first- and second-order velocity slip coefficients by means of a variational technique that applies to the integrodifferential form of the Boltzmann equation based on the true linearized collision operator and the Cercignani-Lampis scattering kernel of the gas-surface interaction. The polynomial form of the Knudsen number obtaine...

متن کامل

Introduced a Modified Set of Boundary Condition of Lattice Boltzmann Method Based on Bennett extension in Presence of Buoyancy Term Considering Variable Diffusion Coefficients

Various numerical boundary condition methods have been proposed to simulate various aspects of the no-slip wall condition using the Lattice Boltzmann Method. In this paper, a new boundary condition scheme is developed to model the no-slip wall condition in the presence of the body force term near the wall which is based on the Bennett extension. The error related to the new model is smaller tha...

متن کامل

Buoyancy Term Evolution in the Multi Relaxation Time Model of Lattice Boltzmann Method with Variable Thermal Conductivity Using a Modified Set of Boundary Conditions

During the last few years, a number of numerical boundary condition schemes have been used to study various aspects of the no-slip wall condition using the lattice Boltzmann method. In this paper, a modified boundary condition method is employed to simulate the no-slip wall condition in the presence of the body force term near the wall. These conditions are based on the idea of the bounce-back ...

متن کامل

Slip flow of an optically thin radiating non-Gray couple stress fluid past a stretching sheet

This paper addresses the combined effects of couple stresses, thermal radiation, viscous dissipation and slip condition on a free convective flow of a couple stress fluid induced by a vertical stretching sheet. The Cogley- Vincenti-Gilles equilibrium model is employed to include the effects of thermal radiation in the study. The governing boundary layer equations are transformed into a system o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010