Belief Functions Based Parameter and Structure Learning of Bayesian Networks in the Presence of Missing Data

نویسنده

  • Sajjad Haider
چکیده

Existing methods of parameter and structure learning of Bayesian Networks (BNs) from a database assume that the database is complete. If there are missing values, they are assumed to be missing at random. This paper incorporates the concepts used in Dempster-Shafer theory of belief functions to learn both the parameters and structure of BNs. Instead of filling the missing values by their estimates, as it is done in the conventional techniques, the proposed approach models the missing values as representing ignorance or lack of belief of a system modeler in the actual state of the corresponding variables. The proposed representation modifies the existing algorithms for parameter and structure learning of BNs. The representation also allows a system modeler to add new findings in terms of support functions as used in belief functions theory; thus, providing a richer way to enter evidence in BNs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

 Structure Learning in Bayesian Networks Using Asexual Reproduction Optimization

A new structure learning approach for Bayesian networks (BNs) based on asexual reproduction optimization (ARO) is proposed in this letter. ARO can be essentially considered as an evolutionary based algorithm that mathematically models the budding mechanism of asexual reproduction. In ARO, a parent produces a bud through a reproduction operator; thereafter the parent and its bud compete to survi...

متن کامل

Statistical Parameter Learning for Belief Networks with Fixed Structure

In this report, we address the problem of parameter learning for belief networks with fixed structure based on empirical observations. Both complete and incomplete (data) observations are included. Given complete data, we describe the simple problem of single parameter learning for intuition and then expand to belief networks under appropriate system decomposition. If the observations are incom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Hybrid Intell. Syst.

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2004