ADP-ribosylation of transducin by pertussis toxin blocks the light-stimulated hydrolysis of GTP and cGMP in retinal photoreceptors.
نویسندگان
چکیده
Cholera toxin and pertussis toxin catalyze ADP-ribosylation of the alpha-subunits of the GTP-binding stimulatory (Ns) and inhibitory (Ni) coupling components, respectively, of adenylate cyclase. Cholera toxin also catalyzes the ADP-ribosylation of transducin, the GTP-binding signal-coupling protein of retinal rod outer segments, and thereby reduces its light-stimulated GTPase activity. We show here that pertussis toxin also ADP-ribosylates transducin. Illumination markedly inhibits the ADP-ribosylation of transducin by pertussis toxin. ADP-ribosylation by this toxin in the dark is also lessened by prior incubation with hydrolysis-resistant GTP analogs. These inhibitory effects indicate that the GDP complex of transducin is the preferred form for ADP-ribosylation by pertussis toxin. Transducin modified by this toxin has a lower affinity for photoexcited rhodopsin than does unmodified transducin. ADP-ribosylation inhibits the light-stimulated GTPase activity of rod outer segments and blocks the signal-coupling activity of transducin in photoactivation of the phosphodiesterase. These and previous results show that cholera and pertussis toxins preferentially ADP-ribosylate the active (GTP-binding) and inactive (GDP-binding) conformations, respectively, of transducin. Correspondingly, ADP-ribosylation by these toxins inhibits GTPase activity by stabilizing transducin in the preferred active (GTP-binding) or inactive (GDP-binding) conformation. The actions of pertussis toxin on retinal rod outer segments provide further evidence for a high degree of homology between retinal transducin and the N proteins of the adenylate cyclase system.
منابع مشابه
Characterization of transducin from bovine retinal rod outer segments. Use of monoclonal antibodies to probe the structure and function of the subunit.
A panel of monoclonal antibodies has been developed against the T alpha, T beta and T gamma subunits of bovine transducin. Two anti-T alpha antibodies from this panel (TF15 and TF16) and a third one (4A) against frog T alpha (Witt, P. L., Hamm, H. E., and Bownds, M. D. (1984) J. Gen. Physiol. 84, 251-263) were characterized. Each of these monoclonal antibodies recognizes a different region of T...
متن کاملLight activation of phospholipase A2 in rod outer segments of bovine retina and its modulation by GTP-binding proteins.
Light stimulates phospholipase A2 activity in rod outer segments (ROS) of bovine retina as measured by the liberation of arachidonate from phosphatidylcholine, in in vitro assays of dark-adapted ROS. A role for GTP-binding proteins (G or N proteins) in the light activation of phospholipase A2 is suggested by the capacity for guanosine 5'-O-(thiotriphosphate) (GTP gamma S) to activate phospholip...
متن کاملEffects of phospholipids and ADP-ribosylation on GTP hydrolysis by Escherichia coli-synthesized Ha-ras-encoded p21.
The Ha-ras protooncogene product p21, which may be involved in control of cellular growth, is a membrane protein that binds guanine nucleotides and hydrolyzes GTP. p21 GTPase activity is stimulated by lysophosphatidylcholine; a delay in activation was observed unless p21 was incubated with the phospholipid prior to assay. Maximal activation by the phospholipid was observed over a narrow concent...
متن کاملEffects of guanyl nucleotides and rhodopsin on ADP-ribosylation of the inhibitory GTP-binding component of adenylate cyclase by pertussis toxin.
Hormonal inhibition of adenylate cyclase is mediated by a guanyl nucleotide binding protein, Gi, which is composed of alpha, beta, and gamma subunits (Gi alpha, G beta gamma). Pertussis toxin blocks hormonal inhibition by catalyzing the ADP-ribosylation of Gi alpha. With purified Gi subunits, but without nucleotides, it was observed that toxin-catalyzed ADP-ribosylation of Gi alpha was negligib...
متن کاملA blue-light-activated GTP-binding protein in the plasma membranes of etiolated peas.
Heterotrimeric GTP-binding regulatory proteins (G proteins) have been identified as part of signal transduction systems in a wide variety of organisms. In this paper, we establish the presence of a G protein associated with the plasma membranes of the apical bud of etiolated peas. The GTPase activity is induced by low fluences of blue light administered to plasma membrane-enriched fractions. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 259 1 شماره
صفحات -
تاریخ انتشار 1984