A Study of Mechanics in Brittle–Ductile Cutting Mode Transition
نویسندگان
چکیده
This paper presents an investigation of the mechanism of the brittle–ductile cutting mode transition from the perspective of the mechanics. A mechanistic model is proposed to analyze the relationship between undeformed chip thickness, deformation, and stress levels in the elastic stage of the periodic chip formation process, regarding whether brittle or ductile mode deformation is to follow the elastic stage. It is revealed that, the distance of tool advancement required to induce the same level of compressive stress decreases with undeformed chip thickness, and thereby the tensile stress below and behind the tool decreases with undeformed chip thickness. As a result, the tensile stress becomes lower than the critical tensile stress for brittle fracture when the undeformed chip thickness becomes sufficiently small, enabling the brittle–ductile cutting mode transition. The finite element method is employed to verify the analysis of the mechanics on a typical brittle material 6H silicon carbide, and confirmed that the distance of the tool advancement required to induce the same level of compressive stress becomes smaller when the undeformed chip thickness decreases, and consequently smaller tensile stress is induced below and behind the tool. The critical undeformed chip thicknesses for brittle–ductile cutting mode transition are estimated according to the proposed mechanics, and are verified by plunge cutting experiments in a few crystal directions. This study should contribute to better understanding of the mechanism of brittle–ductile cutting mode transition and the ultra-precision machining of brittle materials.
منابع مشابه
Experimental Investigation on Cutting Characteristics in Nanometric Plunge-Cutting of BK7 and Fused Silica Glasses
Ductile cutting are most widely used in fabricating high-quality optical glass components to achieve crack-free surfaces. For ultra-precision machining of brittle glass materials, critical undeformed chip thickness (CUCT) commonly plays a pivotal role in determining the transition point from ductile cutting to brittle cutting. In this research, cutting characteristics in nanometric cutting of B...
متن کاملNumerical simulations and cutting experiments on single point diamond machining of semiconductors and ceramics
This chapter presents numerical simulation work and single-point nano-machining experiments conducted on semiconductor and ceramic materials, e.g. silicon (Si) and silicon carbide (SiC). The apparent ductile mode material removal mechanism observed in these materials is believed to be the result of a high pressure phase transformation (HPPT), which generates a small Correspondence/Reprint reque...
متن کاملThe Effect of Laser Heating on the Ductile to Brittle Transition in Silicon
Advanced ceramics and semiconductors (i.e. SiC, Si, Quartz, etc.) are increasingly being used for industrial applications. These ceramics/semiconductors are hard, strong, inert, and light weight. This combination of properties makes them ideal candidates for tribological, semiconductor, MEMS and optoelectronic applications. Manufacturing these materials without causing surface and subsurface da...
متن کاملDuctile behavior of optical glass in single point diamond turning
Single point diamond turning tests were carried out on a B270 type glass. Submicrometer cutting conditions were applied in order to generate ductile response during single point machining. The profile generated by the rapid removal of the tool tip from the machined surface, analyzed by atomic force microscopy, showed that the brittle-to-ductile transition occurs at a few tenths of micrometers. ...
متن کاملDynamic and Quasi-Static Tensile Properties of Structural S400 Steel
The study of mechanical behavior of the structural steel S400 under quasi- static and dynamic loading has been the subject of this investigation. In oder to obtain different stress - triaxiality conditions the specimens were notched with 1, 1.5, 2 and 3.5 mm notch radius. The results of fractography show as the velocity of tension increases, ductility reduces and a ductile-brittle transition oc...
متن کامل