Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy.

نویسندگان

  • Lu Cai
  • Yuehui Wang
  • Guihua Zhou
  • Teresa Chen
  • Ye Song
  • Xiaokun Li
  • Y James Kang
چکیده

OBJECTIVES We aimed to test whether attenuation of early-phase cardiac cell death can prevent diabetic cardiomyopathy. BACKGROUND Our previous study showed that cardiac apoptosis as a major early cellular response to diabetes is induced by hyperglycemia-derived oxidative stress that activates a mitochondrial cytochrome c-mediated caspase-3 activation pathway. Metallothionein (MT) as a potent antioxidant prevents the development of diabetic cardiomyopathy. METHODS Diabetes was induced by a single dose of streptozotocin (STZ) (150 mg/kg) in cardiac-specific, metallothionein-overexpressing transgenic (MT-TG) mice and wild-type (WT) controls. On days 7, 14, and 21 after STZ treatment, cardiac apoptosis was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay and caspase-3 activation. Cardiomyopathy was evaluated by cardiac ultrastructure and fibrosis in the diabetic mice 6 months after STZ treatment. RESULTS A significant reduction in diabetes-induced increases in TUNEL-positive cells, caspase-3 activation, and cytochrome c release from mitochondria was observed in the MT-TG mice as compared to WT mice. Cardiac protein nitration (3-nitrotyrosine [3-NT]) and lipid peroxidation were significantly increased, and there was an increase in mitochondrial oxidized glutathione and a decrease in mitochondrial reduced glutathione in the WT, but not in the MT-TG, diabetic mice. Double staining for cardiomyocytes with alpha sarcomeric actin and caspase-3 or 3-NT confirmed the cardiomyocyte-specific effects. A significant prevention of diabetic cardiomyopathy and enhanced animal survival were observed in the MT-TG diabetic mice as compared to WT diabetic mice. CONCLUSIONS These results suggest that attenuation of early-phase cardiac cell death by MT results in a significant prevention of the development of diabetic cardiomyopathy. This process is mediated by MT suppression of mitochondrial oxidative stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cardiac dysfunction is attenuated by ginkgolide B via reducing oxidative stress and fibrosis in diabetic rats

Objective(s): Diabetic cardiomyopathy is a leading factor of high morbidity and mortality in diabetic patients. Our previous results revealed that ginkgolide B alleviates endothelial dysfunction in diabetic rats. This study aimed to investigate the effect of ginkgolide B on cardiac dysfunction and its mechanism in diabetic rats.Materials and Methods:<...

متن کامل

Inhibition of JNK by novel curcumin analog C66 prevents diabetic cardiomyopathy with a preservation of cardiac metallothionein expression.

The development of diabetic cardiomyopathy is attributed to diabetic oxidative stress, which may be related to the mitogen-activated protein kinase (MAPK) c-Jun NH2-terminal kinase (JNK) activation. The present study tested a hypothesis whether the curcumin analog C66 [(2E,6E)-2,6-bis(2-(trifluoromethyl)benzylidene) cyclohexanone] as a potent antioxidant can protect diabetes-induced cardiac fun...

متن کامل

Diabetes- and angiotensin II-induced cardiac endoplasmic reticulum stress and cell death: metallothionein protection

We have shown cardiac protection by metallothionein (MT) in the development of diabetic cardiomyopathy (DCM) via suppression of cardiac cell death in cardiac-specific MT-overexpressing transgenic (MT-TG) mice. The present study was undertaken to define whether diabetes can induce cardiac endoplasmic reticulum (ER) stress and whether MT can prevent cardiac cell death via attenuating ER stress. D...

متن کامل

Synergism effects of pioglitazone and Urtica dioica extract in streptozotocin-induced nephropathy via attenuation of oxidative stress

Objective(s): Hyperglycemia promotes oxidative stress that plays a crucial role in the pathogenesis of Diabetic nephropathy (DN). In this study, we investigated the synergism effects of hydroalcoholic extract of Urtica dioica and pioglitazone (PIO) on the prevention of DN in streptozotocin induced-diabetic mice. Materials and Methods: Forty-two mice were divided into six groups as follows: non-...

متن کامل

Flos Puerariae Extract Prevents Myocardial Apoptosis via Attenuation Oxidative Stress in Streptozotocin-Induced Diabetic Mice

BACKGROUND Diabetic cardiomyopathy (DCM) suggests a direct cellular insult to myocardium. Apoptosis is considered as one of the hallmarks of DCM. Oxidative stress plays a key role in the pathogenesis of DCM. In this study, we explored the prevention of myocardial apoptosis by crude extract from Flos Puerariae (FPE) in experimental diabetic mice. METHODS Experimental diabetic model was induced...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American College of Cardiology

دوره 48 8  شماره 

صفحات  -

تاریخ انتشار 2006