On binary coproducts of frames
نویسنده
چکیده
The structure of binary coproducts in the category of frames is analyzed, and the results are then applied widely in the study of compactness, local compactness (continuous frames), separatedness, pushouts and closed frame homomorphisms.
منابع مشابه
Free Constructions and Coproducts of d-Frames
A general theory of presentations for d-frames does not yet exist. We review the difficulties and give sufficient conditions for when they can be overcome. As an application we prove that the category of d-frames is closed under coproducts.
متن کاملNormalization by Evaluation for Typed Lambda Calculus with Coproducts
Abstract We solve the decision problem for simply typed lambda calculus with strong binary sums, equivalently the word problem for free cartesian closed categories with binary coproducts. Our method is based on the semantical technique known as “normalization by evaluation” and involves inverting the interpretation of the syntax into a suitable sheaf model and from this extracting appropriate u...
متن کاملOn coproducts of quantale algebras
While the study of quantale-like structures goes back up to the 1930’s (notwithstanding that the term itself was introduced in [2] in connection with certain aspects of C∗-algebras), there has recently been much interest in quantales in a variety of contexts. The most important connection probably is with Girard’s linear logic. In particular, one can enunciate the following slogan: Quantales ar...
متن کاملCambrian Hopf Algebras
Cambrian trees are oriented and labeled trees which fulfill local conditions around each node generalizing the conditions for classical binary search trees. Based on the bijective correspondence between signed permutations and leveled Cambrian trees, we define the Cambrian Hopf algebra generalizing J.-L. Loday and M. Ronco’s algebra on binary trees. We describe combinatorially the products and ...
متن کاملSubpullbacks and coproducts of $S$-posets
In 2001, S. Bulman-Fleming et al. initiated the study of three flatness properties (weakly kernel flat, principally weakly kernel flat, translation kernel flat) of right acts $A_{S}$ over a monoid $S$ that can be described by means of when the functor $A_{S} otimes -$ preserves pullbacks. In this paper, we extend these results to $S$-posets and present equivalent descriptions of weakly kernel p...
متن کامل