Testing Accuracy and Repeatability of UAV Blocks Oriented with GNSS-Supported Aerial Triangulation
نویسندگان
چکیده
UAV Photogrammetry today already enjoys a largely automated and efficient data processing pipeline. However, the goal of dispensing with Ground Control Points looks closer, as dual-frequency GNSS receivers are put on board. This paper reports on the accuracy in object space obtained by GNSS-supported orientation of four photogrammetric blocks, acquired by a senseFly eBee RTK and all flown according to the same flight plan at 80 m above ground over a test field. Differential corrections were sent to the eBee from a nearby ground station. Block orientation has been performed with three software packages: PhotoScan, Pix4D and MicMac. The influence on the checkpoint errors of the precision given to the projection centers has been studied: in most cases, values in Z are critical. Without GCP, the RTK solution consistently achieves a RMSE of about 2–3 cm on the horizontal coordinates of checkpoints. In elevation, the RMSE varies from flight to flight, from 2 to 10 cm. Using at least one GCP, with all packages and all test flights, the geocoding accuracy of GNSS-supported orientation is almost as good as that of a traditional GCP orientation in XY and only slightly worse in Z.
منابع مشابه
Accuracy Analysis of Photogrammetric UAV Image Blocks: Influence of Onboard RTK-GNSS and Cross Flight Patterns
Unmanned aerial vehicles (UAV) are increasingly used for topographic mapping. Despite the flexibility gained when using those devices, one has to invest more effort for ground control measurements compared to conventional photogrammetric airborne data acquisition, because positioning devices on UAVs are generally less accurate. Additionally, the limited quality of employed end-user cameras asks...
متن کاملAutomatic UAV Image Geo-Registration by Matching UAV Images to Georeferenced Image Data
Recent years have witnessed the fast development of UAVs (unmanned aerial vehicles). As an alternative to traditional image acquisition methods, UAVs bridge the gap between terrestrial and airborne photogrammetry and enable flexible acquisition of high resolution images. However, the georeferencing accuracy of UAVs is still limited by the low-performance on-board GNSS and INS. This paper invest...
متن کاملAdaptation of Dubins Paths for UAV Ground Obstacle Avoidance When Using a Low Cost On-Board GNSS Sensor
Current research on Unmanned Aerial Vehicles (UAVs) shows a lot of interest in autonomous UAV navigation. This interest is mainly driven by the necessity to meet the rules and restrictions for small UAV flights that are issued by various international and national legal organizations. In order to lower these restrictions, new levels of automation and flight safety must be reached. In this paper...
متن کاملDevelopment of an Avionics System for Flight Data Collection of an UAV Helicopter
In this present work, the development of an avionics system for flight data collection of a Raptor 30 V2 is carried out. For the data acquisition both onground and onboard avionics systems are developed for testing of a small-scale Unmanned Aerial Vehicle (UAV) helicopter. The onboard avionics record the helicopter state outputs namely accelerations, angular rates and Euler angles, in real time...
متن کاملQuality Assessment of DSMs Produced from UAV Flights Georeferenced with On-Board RTK Positioning
High-resolution Digital Surface Models (DSMs) from unmanned aerial vehicles (UAVs) imagery with accuracy better than 10 cm open new possibilities in geosciences and engineering. The accuracy of such DSMs depends on the number and distribution of ground control points (GCPs). Placing and measuring GCPs are often the most time-consuming on-site tasks in a UAV project. Safety or accessibility conc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017