Quantifying Interparticle Forces and Heterogeneity in 3D Granular Materials.

نویسندگان

  • R C Hurley
  • S A Hall
  • J E Andrade
  • J Wright
چکیده

Interparticle forces in granular materials are intimately linked to mechanical properties and are known to self-organize into heterogeneous structures, or force chains, under external load. Despite progress in understanding the statistics and spatial distribution of interparticle forces in recent decades, a systematic method for measuring forces in opaque, three-dimensional (3D), frictional, stiff granular media has yet to emerge. In this Letter, we present results from an experiment that combines 3D x-ray diffraction, x-ray tomography, and a numerical force inference technique to quantify interparticle forces and their heterogeneity in an assembly of quartz grains undergoing a one-dimensional compression cycle. Forces exhibit an exponential decay above the mean and partition into strong and weak networks. We find a surprising inverse relationship between macroscopic load and the heterogeneity of interparticle forces, despite the clear emergence of two force chains that span the system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jamming transition in emulsions and granular materials.

We investigate the jamming transition in packings of emulsions and granular materials via molecular dynamics simulations. The emulsion model is composed of frictionless droplets interacting via nonlinear normal forces obtained using experimental data acquired by confocal microscopy of compressed emulsions systems. Granular materials are modeled by Hertz-Mindlin deformable spherical grains with ...

متن کامل

Dynamical Heterogeneity and Jamming in Glass-Forming Liquids†

The relationship between spatially heterogeneous dynamics (SHD) and jamming is studied in a glass-forming binary Lennard-Jones system via molecular dynamics simulations. It has been suggested [Phys. ReV. Lett. 2001, 86, 111]1 that the probability distribution of interparticle forces P(F) develops a peak at the glass transition temperature Tg and that the large force inhomogeneities, responsible...

متن کامل

Micromechanical Study of Macroscopic Friction and Dissipation in Idealised Granular Materials: the Effect of Interparticle Friction

A micromechanical study is made of the relationship between interparticle friction coefficient and macroscopic continuum friction and dissipation in idealised granular materials, using Discrete Element Method simulations with varying . As expected, macroscopic friction and dilatancy increase with . Surprisingly, dissipation is present even when or when . Hence, dissipation in idealised granular...

متن کامل

Friction and pressure-dependence of force chain communities in granular materials

Granular materials transmit stress via a network of force chains. Despite the importance of these chains in characterizing the stress state and dynamics of the system, there is no common framework for quantifying their properties. Recently, attention has turned to the tools of network science as a promising route to such a description. In this paper, we apply a common network-science technique,...

متن کامل

Strains Due to Coupled Phenomena – Particle-level Analyses

The interaction between the solid particles and the pore fluid in granular materials affects various interparticle forces. The change in any one of these forces triggers the response of the granular skeleton, causes strain and even important fabric changes. Coupling phenomena that result in skeletal strains are related to fluid properties, electrical-chemical interactions, and thermal effects. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 117 9  شماره 

صفحات  -

تاریخ انتشار 2016