Phosphorylation of the ryanodine receptor mediates the cardiac fight or flight response in mice.
نویسندگان
چکیده
During the classic "fight-or-flight" stress response, sympathetic nervous system activation leads to catecholamine release, which increases heart rate and contractility, resulting in enhanced cardiac output. Catecholamines bind to β-adrenergic receptors, causing cAMP generation and activation of PKA, which phosphorylates multiple targets in cardiac muscle, including the cardiac ryanodine receptor/calcium release channel (RyR2) required for muscle contraction. PKA phosphorylation of RyR2 enhances channel activity by sensitizing the channel to cytosolic calcium (Ca²+). Here, we found that mice harboring RyR2 channels that cannot be PKA phosphorylated (referred to herein as RyR2-S2808A+/+ mice) exhibited blunted heart rate and cardiac contractile responses to catecholamines (isoproterenol). The isoproterenol-induced enhancement of ventricular myocyte Ca²+ transients and fractional shortening (contraction) and the spontaneous beating rate of sinoatrial nodal cells were all blunted in RyR2-S2808A+/+ mice. The blunted cardiac response to catecholamines in RyR2-S2808A+/+ mice resulted in impaired exercise capacity. RyR2-S2808A+/+ mice were protected against chronic catecholaminergic-induced cardiac dysfunction. These studies identify what we believe to be new roles for PKA phosphorylation of RyR2 in both the heart rate and contractile responses to acute catecholaminergic stimulation.
منابع مشابه
Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor.
The cardiac ryanodine receptor (RyR2)/calcium release channel on the sarcoplasmic reticulum is required for muscle excitation-contraction coupling. Using site-directed mutagenesis, we identified the specific Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylation site on recombinant RyR2, distinct from the site for protein kinase A (PKA) that mediates the "fight-or-flight" stress r...
متن کاملCa /Calmodulin-Dependent Protein Kinase II Phosphorylation Regulates the Cardiac Ryanodine Receptor
The cardiac ryanodine receptor (RyR2)/calcium release channel on the sarcoplasmic reticulum is required for muscle excitation-contraction coupling. Using site-directed mutagenesis, we identified the specific Ca /calmodulindependent protein kinase II (CaMKII) phosphorylation site on recombinant RyR2, distinct from the site for protein kinase A (PKA) that mediates the “fight-or-flight” stress res...
متن کاملRyanodine receptor/calcium release channel PKA phosphorylation: a critical mediator of heart failure progression.
Defective regulation of the cardiac ryanodine receptor (RyR2)/calcium release channel, required for excitation-contraction coupling in the heart, has been linked to cardiac arrhythmias and heart failure. For example, diastolic calcium "leak" via RyR2 channels in the sarcoplasmic reticulum has been identified as an important factor contributing to impaired contractility in heart failure and vent...
متن کاملGenetic ablation of ryanodine receptor 2 phosphorylation at Ser-2808 aggravates Ca(2+)-dependent cardiomyopathy by exacerbating diastolic Ca2+ release.
Phosphorylation of the cardiac ryanodine receptor (RyR2) by protein kinase A (PKA) at Ser-2808 is suggested to mediate the physiological 'fight or flight' response and contribute to heart failure by rendering the sarcoplasmic reticulum (SR) leaky for Ca(2+). In the present study, we examined the potential role of RyR2 phosphorylation at Ser-2808 in the progression of Ca(2+)-dependent cardiomyop...
متن کاملClinical implications of cardiac ryanodine receptor/calcium release channel mutations linked to sudden cardiac death.
The cardiac ryanodine receptor (RyR2) is the major calcium (Ca ) release channel on the sarcoplasmic reticulum (SR) in cardiomyocytes. During excitationcontraction, coupling intracellular Ca stored in the SR is released via RyR2 to activate muscle contraction. In the heart, excitation-contraction coupling is activated by Ca influx via the L-type Ca channel that activates RyR2, a process referre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 120 12 شماره
صفحات -
تاریخ انتشار 2010