The miR-101/RUNX1 feedback regulatory loop modulates chemo-sensitivity and invasion in human lung cancer.
نویسندگان
چکیده
The deregulation of miR-101 has been implicated in multiple cancer types including lung cancer, but the exact role, mechanisms and how silencing of miR-101 remain elusive. Here we confirmed miR-101 downregulation in lung cancer cell lines and patient tissues. Restored miR-101 expression remarkably sensitized lung cancer cells to chemotherapy and inhibited invasion. Mechanistically, we indicated that miR-101 inversely correlated with RUNX1 expression, and identified RUNX1 as a novel target of miR-101. RUNX1 impaired the effects of miR-101 on chemotherapeutic sensitization and invasion inhibition. Moreover, RUNX1 knockdown resulted into increase of miR-101 expression and elevation of luciferase activity driven by miR-101 promoter in lung cancer cells, suggesting RUNX1 negatively transcriptionally regulated miR-101 expression via physically binding to miR-101 promoter. These findings support that miR-101 downregulation accelerates the progression of lung cancer via RUNX1 dependent manner and suggest that miR-101/RUNX1 feedback axis may have therapeutic value in treating refractory lung cancer.
منابع مشابه
MALAT1-miR-101-SOX9 feedback loop modulates the chemo-resistance of lung cancer cell to DDP via Wnt signaling pathway
Cisplatin (DDP)-based chemotherapy is a standard strategy for lung cancer, while chemoresistance remains a major therapeutic challenge. Recent evidence highlights the crucial regulatory roles of long non-coding RNAs (lncRNA) in tumor biology. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has important roles in regulating the proliferation, invasion and migration of lung cancer...
متن کاملBioinformatics identification of miRNA-mRNA regulatory network contributing to lung cancer invasion
Background: Over the past 15 years, significant insights have been gained into the roles of miRNAs in cancer. In various cancers, miRNAs can act as oncogenes, tumor suppressors, or control the metastasis process by modulating the expression of numerous target genes. This study is aimed at determining molecular network of miRNA-mRNA regulating lung cancer invasion, by bioinformatics approaches. ...
متن کاملA novel AP-1/miR-101 regulatory feedback loop and its implication in the migration and invasion of hepatoma cells
MicroRNA-101 (miR-101) is frequently downregulated in various cancers. To date, the regulatory networks of miR-101 remain obscure. In this study, we demonstrated that miR-101 was mainly transcribed from human miR-101-2 and mouse miR-101bgene loci. Subsequent analyses revealed that activator protein-1 (AP-1) directly binded to the -17.4 to -16.4 k region upstream of pre-miR-101-2 and activated t...
متن کاملA regulatory interplay between miR-27a and Runx1 during megakaryopoiesis.
The transcription factor Runx1 is a key regulator of definitive hematopoiesis in the embryo and the adult. Lineage-specific expression of Runx1 involves transcription and post-transcription control through usage of alternative promoters and diverse 3'UTR isoforms, respectively. We identified and mapped microRNA (miR) binding sites on Runx1 3'UTR and show that miR-27a, miR-9, miR-18a, miR-30c, a...
متن کاملThe miR-491-3p/mTORC2/FOXO1 regulatory loop modulates chemo-sensitivity in human tongue cancer
We found that levels of miR-491-3p were decreased in multidrug-resistant tongue cancer (TC) cells. Induction of miR-491-3p expression sensitized TC cells to chemotherapy. In agreement, functional inhibition of miR-491-3p enhanced resistance of TC cells to chemotherapy. We found that miR-491-3p directly targeted mTORC2 component Rictor and inhibited mTORC2 activity, which was increased in resist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of clinical and experimental medicine
دوره 8 9 شماره
صفحات -
تاریخ انتشار 2015