The "Blob" Filter: Gaussian Mixture Nonlinear Filtering with Re-Sampling for Mixand Narrowing

نویسنده

  • Mark L. Psiaki
چکیده

A new Gaussian mixture filter has been developed, one that uses a re-sampling step in order to limit the covariances of its individual Gaussian components. The new filter has been designed to produce accurate solutions of difficult nonlinear/nonBayesian estimation problems. It uses static multiple-model filter calculations and Extended Kalman Filter (EKF) approximations for each Gaussian mixand in order to perform dynamic propagation and measurement update. The re-sampling step uses a newly designed algorithm that employs linear matrix inequalities in order to bound each mixand's covariance. Resampling occurs between the dynamic propagation and the measurement update in order to ensure bounded covariance in both of these operations. The resulting filter has been tested on a difficult 7-state nonlinear filtering problem. It achieves significantly better accuracy than a simple EKF, an Unscented Kalman Filter, a Moving-Horizon Estimator/BackwardsSmoothing EKF, and a regularized Particle Filter. Keywords—Kalman Filter; Bayesian Filter; Gaussian Mixture Filter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian Mixture Approximation by Another Gaussian Mixture for 'Blob' Filter Re-Sampling

A new method has been developed to approximate one Gaussian mixture by another in a process that generalizes the idea of importance re-sampling in a particle filter. This algorithm is being developed as part of an effort to generalize the concept of a particle filter. In a traditional particle filter, the underlying probability density function is described by particles: Dirac delta functions w...

متن کامل

Gaussian sum particle filtering for dynamic state space models

For dynamic systems, sequential Bayesian estimation requires updating of the filtering and predictive densities. For nonlinear and non-Gaussian models, sequential updating is not as straightforward as in the linear Gaussian model. In this paper, densities are approximated as finite mixture models as is done in the Gaussian sum filter. A novel method is presented, whereby sequential updating of ...

متن کامل

Speech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering

Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...

متن کامل

Improved Bearings-Only Multi-Target Tracking with GM-PHD Filtering

In this paper, an improved nonlinear Gaussian mixture probability hypothesis density (GM-PHD) filter is proposed to address bearings-only measurements in multi-target tracking. The proposed method, called the Gaussian mixture measurements-probability hypothesis density (GMM-PHD) filter, not only approximates the posterior intensity using a Gaussian mixture, but also models the likelihood functi...

متن کامل

Effect of Post-Reconstruction Gaussian Filtering on Image Quality and Myocardial Blood Flow Measurement with N-13 Ammonia PET

Objective(s): In order to evaluate the effect of post-reconstruction Gaussian filtering on image quality and myocardial blood flow (MBF) measurement by dynamic N-13 ammonia positron emission tomography (PET), we compared various reconstruction and filtering methods with image characteristics. Methods: Dynamic PET images of three patients with coronary artery disease (male-female ratio of 2:1; a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014