Superconductivity in thallium double atomic layer and transition into an insulating phase intermediated by a quantum metal state

نویسندگان

  • Christophe Brun
  • Tristan Cren
  • Yu Saito
  • Tsutomu Nojima
  • Sangita Bose
  • Pushan Ayyub
چکیده

We report on the first observation of superconductivity in a double atomic layer of Tl on Si(1 1 1) using in situ electrical resistivity measurements in ultrahigh vacuum. The structure of the Tl bilayer was characterized by a set of techniques, including scanning tunneling microscopy, electron diffraction and photoemission spectroscopy, which confirmed the metastability and metallic nature of the Tl bilayer. The epitaxial growth of atomically thin ‘soft’ metallic film over the entire surface of substrate enabled us to find a macroscopic superconducting transition at 0.96 K, accompanied by thermal and quantum fluctuations of order parameter. The system also demonstrates a perpendicular-magnetic-field-induced superconductor-insulator transition, together with an intermediate metallic state. We have found that the magnetoresitivity at the lowest temperature is consistent with the Bose metal picture, which is a consequence of strong quantum fluctuations. PAPER 2017

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electric double-layer transistor using layered iron selenide Mott insulator TlFe1.6Se2.

A(1-x)Fe(2-y)Se2 (A = K, Cs, Rb, Tl) are recently discovered iron-based superconductors with critical temperatures (Tc) ranging up to 32 K. Their parent phases have unique properties compared with other iron-based superconductors; e.g., their crystal structures include ordered Fe vacancies, their normal states are antiferromagnetic (AFM) insulating phases, and they have extremely high Néel tran...

متن کامل

Electrostatic tuning of the superconductor to insulator transition of YBa2Cu3O7−x using ionic liquids

Ultrathin YBa2Cu3O7-x (YBCO) films were grown on SrTiO3 (STO) substrates using a high-pressure oxygen sputtering system. The films were incorporated in a field effect transistor configuration to study the control of superconductivity by electrostatic charging. While devices using STO as both the substrate and gate dielectric have produced only small Tc shifts, a clear transition between superco...

متن کامل

Erratum: Large Fermi Surface of Heavy Electrons at the Border of Mott Insulating State in NiS2

One early triumph of quantum physics is the explanation why some materials are metallic whereas others are insulating. While a treatment based on single electron states is correct for most materials this approach can fail spectacularly, when the electrostatic repulsion between electrons causes strong correlations. Not only can these favor new and subtle forms of matter, such as magnetism or sup...

متن کامل

Metal-Graphene hybrids as a model system for 2D Superconductivity

Graphene provides a ideal 2D gas of Dirac Fermions which is directly exposed to the environment. Therefore it provides an ideal platform on which to tune, via application of an electrostatic gate, the coupling between electronically ordered adsorbates deposited on its surface. This situation is particularly interesting when the network of adsorbates can induce some electronic order within the u...

متن کامل

Parallel charge sheets of electron liquid and gas in La0.5Sr0.5TiO3/SrTiO3 heterostructures

We show here a new phenomenon in La0.5Sr0.5TiO3/SrTiO3 (LSTO/STO) heterostructures; that is a coexistence of three-dimensional electron liquid (3DEL) and 2D electron gas (2DEG), separated by an intervening insulating LSTO layer. The two types of carriers were revealed through multi-channel analysis of the evolution of nonlinear Hall effect as a function of film thickness, temperature and back g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017