Effect of gate dielectric on threshold voltage of Nanoscale MOSFETS
نویسندگان
چکیده
An integrated circuit (IC) dimensions continue to decrease, RC delay, crosstalk noise, and power dissipation of the interconnect structure become limiting factors for ultra-large-scale integration of integrated circuits. Modern microcircuits may have eight metal layers, each separated by only 0.1 micrometers. RC delays and cross talk rather than transistor speed are now the major performance limitations. The semiconductor industry has responded by developing copper metallization to replace aluminum and lower dielectric constant materials to replace silicon oxide. Materials with different low dielectric constant are being analyzed to replace silicon dioxide as inter level dielectrics. In this paper, how the dielectric constant is affecting the threshold voltage is first discussed. The simulation works are carried using MATLAB, SCHRED software. Based on the results obtained on the effect of kvalues on VT in nano MOSFETs, the low-k material (PTFE) is suggested as a suitable material for the development of MOSFET as well as interconnects.
منابع مشابه
Comprehensive Examination of Threshold Voltage Fluctuations in Nanoscale Planar MOSFET and Bulk FinFET Devices
Intrinsic fluctuations on device characteristics, such as the threshold voltage (Vth) fluctuation is crucial in determining the behavior of nanoscale semiconductor devices. In this paper, the dependency of process-variation and random-dopant-induced Vth fluctuation on the gate oxide thickness scaling in 16 nm metal-oxidesemiconductor field effect transistors (MOSFETs) is investigated. Fluctuati...
متن کاملAn Accurate 2D Analytical Model for Transconductance to Drain Current ratio (gm/Id) for a Dual Halo Dual Dielectric Triple Material Cylindrical Gate All Around MOSFETs
A dual-halo dual-dielectric triple-material cylindrical-gate-all-around/surrounding gate (DH-DD-TM-CGAA/SG) MOSFET has been proposed and an analytical model for the transconductance-to-drain current ratio (TDCR) has been developed. It is verified that incorporation of dual-halo with dual-dielectric and triple-material results in enhancing the device performance in terms of improved TDCR. The ef...
متن کاملCompact, Physics-Based Modeling of Nanoscale Limits of Double-Gate MOSFETs
Compact, physics-based models of subthreshold swing and threshold voltage are presented for double-gate (DG) MOSFETs in symmetric, asymmetric, and ground-plane modes. Applying these device models, threshold voltage variations in DG MOSFETs are comprehensively and exhaustively investigated using a unique, scale-length based methodology. Quantum mechanical effects and fringeinduced barrier loweri...
متن کاملGate Engineering on the Analog Performance of DM-DG MOSFETs with High K Dielectrics
Considerable challenges are encountered when bulk CMOS devices are scaled into the sub-100 nm regime for higher integrated circuit (IC) density and performance. Due to their excellent scalability and better immunity to short channel effects, double-gate (DG) MOSFETs are being easily assessed for CMOS applications beyond the 70 nm of the SIA roadmap. For channel lengths below 100 nm, DG MOSFETs ...
متن کاملInversion-mode InxGa1-xAs MOSFETs (x=0.53,0.65,0.75) with atomic-layer- deposited high-k dielectrics
High-performance inversion-type enhancement-mode (E-mode) nchannel MOSFETs on In-rich InGaAs using ALD Al2O3 as high-k gate dielectrics are demonstrated. The maximum drain current, peak transconductance, and the effective electron velocity of 1.0 A/mm, 0.43 S/mm and 1.0x10 cm/s at drain voltage of 2.0 V are achieved at 0.75-μm gate length devices. The device performance of In-rich InGaAs NMOSFE...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012