From quasi - entropy Dénes Petz

نویسنده

  • Dénes Petz
چکیده

The subject is the overview of the use of quasi-entropy in finite dimensional spaces. Matrix monotone functions and relative modular operators are used. The origin is the relative entropy and the f -divergence, monotone metrics, covariance and the χ2 divergence are the most important particular cases. The extension of the monotone metric to two variables is a new concept.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From quasi-entropy

The subject is the overview of the use of quasi-entropy in finite dimensional spaces. Operator monotone functions and relative modular operators are used. The origin is the relative entropy, and the f -divergence, monotone metrics, covariance and the χ2-divergence are the most important particular cases. The extension of monotone metrics to those with two parameters is a new concept. Monotone m...

متن کامل

From quasi-entropy to skew information

This paper gives an overview about particular quasi-entropies, generalized quantum covariances, quantum Fisher informations, skew-informations and their relations. The point is the dependence on operator monotone functions. It is proven that a skew-information is the Hessian of a quasi-entropy. The skewinformation and some inequalities are extended to a von Neumann algebra setting. 2000 Mathema...

متن کامل

From f -Divergence to Quantum Quasi-Entropies and Their Use

Csiszár’s f -divergence of two probability distributions was extended to the quantum case by the author in 1985. In the quantum setting, positive semidefinite matrices are in the place of probability distributions and the quantum generalization is called quasi-entropy, which is related to some other important concepts as covariance, quadratic costs, Fisher information, Cramér-Rao inequality and...

متن کامل

From quasi-entropy to various quantum information quantities

The subject is the applications of the use of quasi-entropy in finite dimensional spaces to many important quantities in quantum information. Operator monotone functions and relative modular operators are used. The origin is the relative entropy, and the f -divergence, monotone metrics, covariance and the χ2-divergence are the most important particular cases. The extension of monotone metrics t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012