Bufalin suppresses hepatocellular carcinoma invasion and metastasis by targeting HIF-1α via the PI3K/AKT/mTOR pathway

نویسندگان

  • Haiyong Wang
  • Chenyue Zhang
  • Litao Xu
  • Kun Zang
  • Zhouyu Ning
  • Feng Jiang
  • Huiying Chi
  • Xiaoyan Zhu
  • Zhiqiang Meng
چکیده

It has been reported that there are multiple mechanisms by which bufalin could exert its antimetastatic effect. HIF-1α has been reported to be involved in tumor migration and invasion by regulating EMT. However, it is not known whether bufalin could exert the antimetastatic effect by modulating HIF-1α expression in hepatocellular carcinoma. In the present study, we aimed to evaluate the antimetastatic potential of bufalin in vivo and in vitro. Our results demonstrated that the liver/lung metastases were significantly reduced in bufalin-treated mice, as tested in the orthotopic transplanted and tail vein injection tumor models. Furthermore, the epithelial-to-mesenchymal transition (EMT) was inhibited in bufalin-treated tumors, as reflected the upregulation of E-cadherin, and downregulation of N-cadherin, vimentin, Snail. Similar results were observed in SMMC7721 cells treated with bufalin. Moreover, the transforming growth factor-β1 (TGF-β1)-induced EMT was also abrogated by bufalin. Mechanistically, our study demonstrated that hypoxia-inducible factor-1α (HIF-1α) played an important role in the antimetastatic effect of bufalin in hepatocellular carcinoma. Importantly, HIF-1α expression may be regulated through the inhibition of the PI3K/AKT/mTOR pathway. Taken together, our results suggest that bufalin suppresses hepatic tumor invasion and metastasis and that this process may be related to the PI3K/AKT/mTOR/ HIF-1α axis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fucoidan Suppresses Hypoxia-Induced Lymphangiogenesis and Lymphatic Metastasis in Mouse Hepatocarcinoma

Metastasis, the greatest clinical challenge associated with cancer, is closely connected to multiple biological processes, including invasion and adhesion. The hypoxic environment in tumors is an important factor that causes tumor metastasis by activating HIF-1α. Fucoidan, extracted from brown algae, is a sulfated polysaccharide and, as a novel marine biological material, has been used to treat...

متن کامل

Activation of PI3 kinase/Akt/HIF-1α pathway contributes to hypoxia-induced epithelial-mesenchymal transition and chemoresistance in hepatocellular carcinoma.

Hypoxia is known to promote malignant progression and to induce chemoresistance in cancer. However, the exact mechanisms driving hypoxia induced malignance remain elusive. We found that with exposure to hypoxic condition, hepatocellular carcinoma (HCC) cells experienced epithelial-mesenchymal transition (EMT), with increased cell migration and inv...

متن کامل

Inflammatory interferon activates HIF-1α-mediated epithelial-to-mesenchymal transition via PI3K/AKT/mTOR pathway

BACKGROUND Tumor microenvironments (TMEs) activate various axes/pathways, predominantly inflammatory and hypoxic responses, impact tumorigenesis, metastasis and therapeutic resistance significantly. Although molecular pathways of individual TME are extensively studied, evidence showing interaction and crosstalk between hypoxia and inflammation remain unclear. Thus, we examined whether interfero...

متن کامل

Triiodothyronine potentiates angiogenesis-related factor expression through PI3K/AKT signaling pathway in human osteoarthritic osteoblasts

Objective(s): Previous study has indicated that triiodothyronine (T3) facilitated cartilage degeneration in osteoarthritis (OA). This study aimed to investigate the effects of T3 on angiogenesis-related factor expression in human osteoblasts of OA subchondral bone.Materials and Methods: The subchondral bone specimens were obtained from O...

متن کامل

Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway

Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016