On harmonic binomial series

نویسنده

  • Mark W. Coffey
چکیده

We evaluate binomial series with harmonic number coefficients, providing recursion relations, integral representations, and several examples. The results are of interest to analytic number theory, the analysis of algorithms, and calculations of theoretical physics, as well as other applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Series with Central Binomial Coefficients, Catalan Numbers, and Harmonic Numbers

We present several generating functions for sequences involving the central binomial coefficients and the harmonic numbers. In particular, we obtain the generating functions for the sequences ( 2n n ) Hn, ( 2n n ) 1 nHn, ( 2n n ) 1 n+1Hn , and ( 2n n ) n m. The technique is based on a special Euler-type series transformation formula.

متن کامل

Interesting Series Associated with Central Binomial Coefficients, Catalan Numbers and Harmonic Numbers

We establish various generating functions for sequences associated with central binomial coefficients, Catalan numbers and harmonic numbers. In terms of these generating functions, we obtain a large variety of interesting series. Our approach is based on manipulating the well-known generating function of the Catalan numbers.

متن کامل

Discovering and Proving Infinite Binomial Sums Identities

We consider binomial and inverse binomial sums at infinity and rewrite them in terms of a small set of constants, such as powers of π or log(2). In order to perform these simplifications, we view the series as specializations of generating series. For these generating series, we derive integral representations in terms of root-valued iterated integrals. Using substitutions, we express the inter...

متن کامل

Harmonic Number Identities Via Euler’s Transform

We evaluate several binomial transforms by using Euler's transform for power series. In this way we obtain various binomial identities involving power sums with harmonic numbers.

متن کامل

Finite summation formulas involving binomial coefficients, harmonic numbers and generalized harmonic numbers

A variety of identities involving harmonic numbers and generalized harmonic numbers have been investigated since the distant past and involved in a wide range of diverse fields such as analysis of algorithms in computer science, various branches of number theory, elementary particle physics and theoretical physics. Here we show how one can obtain further interesting identities about certain fin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008