CD133 promotes gallbladder carcinoma cell migration through activating Akt phosphorylation
نویسندگان
چکیده
Gallbladder carcinoma (GBC) is the fifth most common malignancy of gastrointestinal tract. The prognosis of gallbladder carcinoma is extremely terrible partially due to metastasis. However, the mechanisms underlying gallbladder carcinoma metastasis remain largely unknown. CD133 is a widely used cancer stem cell marker including in gallbladder carcinoma. Here, we found that CD133 was highly expressed in gallbladder carcinoma as compared to normal tissues. CD133 was located in the invasive areas in gallbladder carcinoma. Down-regulation expression of CD133 inhibited migration and invasion of gallbladder carcinoma cell without obviously reducing cell proliferation. Mechanism analysis revealed that down-regulation expression of CD133 inhibited Akt phosphorylation and increased PTEN protein level. The inhibitory effect of CD133 down-regulation on gallbladder carcinoma cell migration could be rescued by Akt activation. Consistent with this, addition of Akt inhibitor Wortmannin markedly inhibited the migration ability of CD133-overexpressing cells. Thus, down-regulation of CD133 inhibits migration of gallbladder carcinoma cells through reducing Akt phosphorylation. These findings explore the fundamental biological aspect of CD133 in gallbladder carcinoma progression, providing insights into gallbladder carcinoma cell migration.
منابع مشابه
TROP2 promotes proliferation, migration and metastasis of gallbladder cancer cells by regulating PI3K/AKT pathway and inducing EMT
The human trophoblast cell surface antigen 2 (TROP2) is overexpressed in many cancers. However, its effect on proliferation, migration and metastasis of gallbladder cancer remains unclear. In this study, we found that TROP2 was highly expressed in gallbladder cancer. Overexpression of TROP2 was associated with poor prognosis. Knockdown of TROP2 in gallbladder cancer cell lines strongly inhibite...
متن کاملIsolation and identification of tumor-initiating cell properties in human gallbladder cancer cell lines using the marker cluster of differentiation 133
The present study aimed to isolate and identify the properties of the cluster of differentiation (CD)133+ subset in human gallbladder cancer cells. The CD133+ and CD133- subpopulations of the GBC-SD cell line were separated using immunomagnetic separation, and the biological features of the two subpopulations were analyzed in vitro and in vivo. In particular, the present study aimed to determin...
متن کاملLong non-coding RNA CRNDE promotes gallbladder carcinoma carcinogenesis and as a scaffold of DMBT1 and C-IAP1 complexes to activating PI3K-AKT pathway
Deleted in malignant brain tumors 1 (DMBT1) is deleted during cancer progression and as a potential tumor-suppressor gene in various types of cancer. However, its role in Gallbladder cancer remains poorly understood. DMBT1 has low-expression and deletion of copy number were detected in normal tissues and GBC cancer tissues by qRT-PCR. Knockdown of DMBT1 increased migration and invasion and over...
متن کاملmicroRNA-29a functions as a tumor suppressor in nasopharyngeal carcinoma 5-8F cells through targeting VEGF
Objective(s): microRNA-29 (miR-29) family miRNAs have been mentioned as tumor suppressive genes in several human cancers. The purpose of this study was to investigate the function of miR-29a in nasopharyngeal carcinoma (NPC) cells. Materials and Methods: Human NPC cell line 5-8F was transfected with mimic, inhibitor or scrambled controls...
متن کاملEIF3D promotes gallbladder cancer development by stabilizing GRK2 kinase and activating PI3K-AKT signaling pathway
Recent evidence suggests that dysregulated eIF3d expression may be critical in various genetic disorders as well as cancer. In this study, we observed that EIF3d levels increased in gallbladder cancer (GBC) samples compared with non-tumor tissue. High eIF3d levels were associated with advanced tumor stage and metastasis and were correlated with poor prognosis in 92 patients with GBC. Depletion ...
متن کامل