Enhanced photoelectrochemical aptasensing platform for TXNDC5 gene based on exciton energy transfer between NCQDs and TiO2 nanorods
نویسندگان
چکیده
The over expression of thioredoxin domain-containing protein 5 (TXNDC5) can promote the growth of castration-resistant prostate cancer (CRPC). A novel highly sensitive photoelectrochemical (PEC) aptsensor was developed for the detection of TXNDC5 by using the nanohybrids (TiO2 NRs/NCQDs) of nitrogen-doped carbon quantum dots (NCQDs) and TiO2 nanorods as the photo-to-electron conversion medium. TiO2 NRs/NCQDs nanohybrids were prepared by controlling the experimental condition. TiO2 NRs were self-assembled to form the nanopores with good photocurrent conversion efficiency. NCQDs possessed carboxyl groups (-COOH) and amino groups (-NH2) in the preparation process. -COOH and -NH2 groups played important roles for anchoring the capture probes (5' primer and 3' primer) through covalent binding. The ultrasensitive and stable detection for TXNDC5 was achieved by the specific recognition between the capture probes and the targets. The fabricated aptsensor showed excellent performance with a wide linear range (0.5 fmol/L ∼ 10 nmol/L) and a low detection limit of 0.1 fmol/L. This kind of aptsensor would provide a potential application for TXNDC5.
منابع مشابه
Enhanced photoelectrochemical aptasensing platform based on exciton energy transfer between CdSeTe alloyed quantum dots and SiO2@Au nanocomposites.
High-efficient exciton energy transfer between CdSeTe alloyed quantum dots and SiO2@Au nanocomposites was applied to develop an enhanced photoelectrochemical aptasensing platform with ultrahigh sensitivity, good selectivity, reproducibility and stability.
متن کاملEnhanced Photoelectrochemical Behavior of H-TiO2 Nanorods Hydrogenated by Controlled and Local Rapid Thermal Annealing
Recently, colored H-doped TiO2 (H-TiO2) has demonstrated enhanced photoelectrochemical (PEC) performance due to its unique crystalline core-disordered shell nanostructures and consequent enhanced conduction behaviors between the core-shell homo-interfaces. Although various hydrogenation approaches to obtain H-TiO2 have been developed, such as high temperature hydrogen furnace tube annealing, hi...
متن کاملنانومیلههای نانوبرگدار شده دیاکسید تیتانیم دوفازی بهمنظور استفاده در کاربردهای فتوالکتروشیمیایی
Rutile-phase titanium dioxide nanorod arrays were prepared by the hydrothermal method. Then, anatase-phase nanoleaves were successfully synthesized on the nanorod arrays via mild aqueous chemistry. Nanorod arrays scanning electron microscopy revealed that the thin film is uniform and crack free and the average diameter and height of the nanorods are 90 nm and 2 µm, respectively. Furthermo...
متن کاملA photoelectrochemical methanol fuel cell based on aligned TiO2 nanorods decorated graphene photoanode.
We report the photoelectrochemical (PEC) oxidation of methanol on a rationally designed graphene-TiO2 nanorod array (G-TNR) photoanode. A PEC methanol fuel cell was constructed by coupling the G-TNR photoanode with a cathode. This study raises a conceptual fuel cell that realizes the synergistic energy conversion of chemical energy and solar energy.
متن کاملEnhanced photoelectrochemical properties of TiO2 nanorod arrays decorated with CdS nanoparticles
TiO2 nanorod arrays (TiO2 NRAs) sensitized with CdS nanoparticles were fabricated via successive ion layer adsorption and reaction (SILAR), and TiO2 NRAs were obtained by oxidizing Ti NRAs obtained through oblique angle deposition. The TiO2 NRAs decorated with CdS nanoparticles exhibited excellent photoelectrochemical and photocatalytic properties under visible light, and the one decorated with...
متن کامل