Efficient leukocyte depletion by a novel microfluidic platform enables the molecular detection and characterization of circulating tumor cells
نویسندگان
چکیده
RT-qPCR is a highly sensitive approach to detect rare transcripts, as derived from circulating tumor cells (CTCs) in the blood of cancer patients. However, the presence of unwanted leukocytes often leads to false positive results. Here, we evaluated whether the micro-fluidic Parsortix™ technology is appropriate to remove these leukocytes and thereby finally to improve the overall approach. In this study, we established a workflow including the micro-fluidic Parsortix™ technology for the molecular detection of CTC related transcripts. Background levels of EpCAM, PPIC, TUSC3, and MAL2 were efficiently removed due to an up to 106-fold depletion of leukocytes. The presence of these gene markers was observed in Parsortix™-enriched blood samples from patients with primary and recurrent gynecological cancer (32% and 14%), as well as in 86% of the metastatic breast cancer samples, at a very high specificity. In the ovarian cancer samples, PPIC was the most prominent gene marker, contributing to all positive cases and at least to 70% of the positive cases after pre-amplification of the respective target genes. Expanding the analytical panel up to 29 gene markers further increased the positivity rate (primary gynecological cancer: 95%, recurrent gynecological cancer: 100%, metastatic breast cancer: 92%). The established workflow strongly improved the overall molecular analysis of the target cells by the efficient removal of contaminating cells, and, thereby offers great promise for the molecular characterization of CTCs.
منابع مشابه
A novel microfluidic platform for size and deformability based separation and the subsequent molecular characterization of viable circulating tumor cells
Circulating tumor cells (CTCs) were introduced as biomarkers more than 10 years ago, but capture of viable CTCs at high purity from peripheral blood of cancer patients is still a major technical challenge. Here, we report a novel microfluidic platform designed for marker independent capture of CTCs. The Parsortix™ cell separation system provides size and deformability-based enrichment with auto...
متن کاملDetection and Molecular Characterization of Gammacoronavirus in Quail Population in Iran
BACKGROUND: Gammacoronaviruses, which are single-stranded, positive-sense RNA viruses, are responsible for a wide variety of existing and emerging diseases in birds. The Gammacoronaviruses primarily infect avian hosts. OBJECTIVES: This study aimed to investigate the genetic diversity of Gammacoronaviruses in quail population in Iran. METHODS: In the period from 2016 to 2018, samples from 47 qua...
متن کاملDendrosomal nanocurcumin and p53 overexpression synergistically trigger apoptosis in glioblastoma cells
Objective(s): Glioblastoma is the most lethal tumor of the central nervous system. Here, we aimed to evaluate the effects of exogenous delivery of p53 and a nanoformulation of curcumin called dendrosomal curcumin (DNC), alone and in combination, on glioblastoma tumor cells. Materials and Methods: MTT assay was exploited to measure the viability of U87-MG cells against DNC treatment. Cells were ...
متن کاملNumerical Study of Droplet Generation Process in a Microfluidic Flow Focusing
Microfluidic flow focusing devices have been utilized for droplet generation on account of its superior control over droplet size. Droplet based microfluidics addressed many scientific issues by providing a novel technological platform for applications such as biology, pharmaceutical industry, biomedical studies and drug delivery. This study numerically investigated the droplet generation proce...
متن کاملFunctional Characterization of Circulating Tumor Cells with a Prostate-Cancer-Specific Microfluidic Device
Cancer metastasis accounts for the majority of cancer-related deaths owing to poor response to anticancer therapies. Molecular understanding of metastasis-associated drug resistance remains elusive due to the scarcity of available tumor tissue. Isolation of circulating tumor cells (CTCs) from the peripheral blood of patients has emerged as a valid alternative source of tumor tissue that can be ...
متن کامل