SELECTION OF NEGATIVE SAMPLES FOR ONE-CLASS MATRIX FACTORIZATION Selection of Negative Samples for One-class Matrix Factorization

نویسندگان

  • Hsiang-Fu Yu
  • Mikhail Bilenko
  • Chih-Jen Lin
چکیده

Many recommender systems have only implicit user feedback. The two possible ratings are positive and negative, but only part of positive entries are observed. One-class matrix factorization (MF) is a popular approach for such scenarios by treating some missing entries as negative. Two major ways to select negative entries are by sub-sampling a set with similar size to that of observed positive entries or by including all missing entries as negative. They are referred to as “subsampled” and “full” approaches in this work, respectively. Currently detailed comparisons between these two selection schemes on large-scale data are still lacking. One important reason is that the “full” approach leads to a hard optimization problem after treating all missing entries as negative. In this paper, we successfully develop efficient optimization techniques to solve this challenging problem so that the “full” approach becomes practically viable. We then compare in detail the two approaches “subsampled” and “full” for selecting negative entries. Results show that the “full” approach of including much more missing entries as negative yields better results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voice-based Age and Gender Recognition using Training Generative Sparse Model

Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...

متن کامل

Iterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition

Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...

متن کامل

A new approach for building recommender system using non negative matrix factorization method

Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is ​​decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...

متن کامل

A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem.  At each step of ALS algorithms two convex least square problems should be solved, which causes high com...

متن کامل

Selection of Negative Samples for One-class Matrix Factorization

Many recommender systems have only implicit user feed-back. The two possible ratings are positive and negative,but only part of positive entries are observed. One-classmatrix factorization (MF) is a popular approach for suchscenarios by treating some missing entries as negative. Two major ways to select negative entries are by sub-sampling aset with similar size to that of o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016