Dopamine regulates phosphate uptake by opossum kidney cells through multiple counter-regulatory receptors.

نویسندگان

  • E D Lederer
  • S S Sohi
  • K R McLeish
چکیده

The purpose of this study was to determine the mechanisms of dopamine regulation of phosphate uptake in opossum kidney (OK) cells, a model of proximal renal tubules. Dopamine stimulated cAMP generation and inhibited radiolabeled phosphate uptake into OK cell monolayers by 14.4 +/- 1.8%. The effect of dopamine was transient, as phosphate uptake returned toward control level by 3 h despite the continued presence of dopamine. Pretreatment with pertussis toxin increased dopamine inhibition of phosphate uptake to 25 +/- 3%, increased the duration of the dopamine effect to at least 3 h, and enhanced cAMP generation. In an OK cell clone that overexpressed cAMP phosphodiesterase, dopamine did not inhibit phosphate uptake, but pharmacologic inhibition of protein kinase A activation did not prevent dopamine inhibition of phosphate uptake. A DA1 receptor agonist inhibited phosphate uptake more potently than dopamine (29.5 +/- 1.1%) or a DA2 receptor agonist (7.9 +/- 2%). However, both DA1 and DA2 receptor antagonists completely blocked dopamine inhibition of phosphate uptake. DA1, but not the DA2, antagonists blocked dopamine-stimulated cAMP generation. Treatment with alpha-adrenergic receptor antagonists potentiated dopamine inhibition of phosphate uptake to the same extent as pertussis toxin and was not additive with pertussis toxin. It is concluded that dopamine inhibits phosphate uptake through DA1 and DA2 receptor stimulation by cAMP-dependent and -independent pathways and activates a pertussis toxin-sensitive counter-regulatory pathway that attenuates this response through alpha-adrenergic receptor stimulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dopamine regulation of Na+-K+-ATPase requires the PDZ-2 domain of sodium hydrogen regulatory factor-1 (NHERF-1) in opossum kidney cells.

Na(+)-K(+)-ATPase activity in renal proximal tubule is regulated by several hormones including parathyroid hormone (PTH) and dopamine. The current experiments explore the role of Na(+)/H(+) exchanger regulatory factor 1 (NHERF-1) in dopamine-mediated regulation of Na(+)-K(+)-ATPase. We measured dopamine regulation of ouabain-sensitive (86)Rb uptake and Na(+)-K(+)-ATPase α1 subunit phosphorylati...

متن کامل

Extracts from tumors causing oncogenic osteomalacia inhibit phosphate uptake in opossum kidney cells.

In oncogenic osteomalacia (OOM), a tumor produces an unknown substance that inhibits phosphate reabsorption in the proximal tubules. This causes urinary phosphate wasting and, as a consequence, hypophosphatemic osteomalacia. To characterize this poorly understood biological tumor activity we generated aqueous extracts from several OOM tumors. Extracts from three of four tumors inhibited, dose- ...

متن کامل

α2C-Adrenoceptors modulate L-DOPA uptake in opossum kidney cells and in the mouse kidney.

Targeted deletion or selective pharmacological inhibition of α(2C)-adrenoceptors in mice results in increased brain tissue levels of dopamine and its precursor l-3,4-dihydroxyphenylalanine (l-DOPA), without significant changes in l-DOPA synthesis. l-DOPA uptake is considered the rate-limiting step in dopamine synthesis in the kidney. Since α(2C)-adrenoceptors may influence the transport of l-DO...

متن کامل

Ouabain-insensitive acidification by dopamine in renal OK cells: primary control of the Na(+)/H(+) exchanger.

The present study was aimed at evaluating the role of D(1)- and D(2)-like receptors and investigating whether inhibition of Na(+) transepithelial flux by dopamine is primarily dependent on inhibition of the apical Na(+)/H(+) exchanger, inhibition of the basolateral Na(+)-K(+)-ATPase, or both. The data presented here show that opossum kidney cells are endowed with D(1)- and D(2)-like receptors, ...

متن کامل

Calcium-sensing receptor regulation of PTH-inhibitable proximal tubule phosphate transport.

Inorganic phosphate (Pi) is absorbed by proximal tubules through a cellular pathway that is inhibited by parathyroid hormone (PTH). The calcium-sensing receptor (CaSR) is expressed on apical membranes of proximal tubules. In the present studies, we determined the effect of luminal and/or basolateral PTH on phosphate absorption and tested the hypothesis that CaSR activation blocks PTH-inhibitabl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Society of Nephrology : JASN

دوره 9 6  شماره 

صفحات  -

تاریخ انتشار 1998