Gauss hypergeometric function and quadratic R-matrix algebras
نویسندگان
چکیده
We consider representations of quadratic R-matrix algebras by means of certain first order ordinary differential operators. These operators turn out to act as parameter shifting operators on the Gauss hypergeometric function and its limit cases and on classical orthogonal polynomials. The relationship with W. Miller’s treatment of Lie algebras of first order differential operators will be discussed. This paper appeared as Report 93-24, in Mathematical preprint series, University of Amsterdam (November 12, 1993) and has been submitted to the journal “Algebra and Analysis” (or St.Petersburg Mathematical Journal). hep-th/9311152
منابع مشابه
ON AN EXTENSION OF A QUADRATIC TRANSFORMATION FORMULA DUE TO GAUSS
The aim of this research note is to prove the following new transformation formula begin{equation*} (1-x)^{-2a},_{3}F_{2}left[begin{array}{ccccc} a, & a+frac{1}{2}, & d+1 & & \ & & & ; & -frac{4x}{(1-x)^{2}} \ & c+1, & d & & end{array}right] \ =,_{4}F_{3}left[begin{array}{cccccc} 2a, & 2a-c, & a-A+1, & a+A+1 & & \ & & & & ; & -x \ & c+1, & a-A, & a+A & & end{array} right], end{equation*} wher...
متن کاملA new integral solution of the hypergeometric equation
In this work we derive a new integral of the hypergeometric differential equation, valid for arbitrary parameters α, β, γ and which is expressed in terms of indefinite integrals. This leads to new types of relations between F (α, β, γ;x) and its contiguous functions : F (α, β, γ;x) can be related to only one of the functions contiguous to it.These equations enable one to extend the formulae giv...
متن کاملMatrix-variate Gauss Hypergeometric Distribution
In this paper, we propose a matrix-variate generalization of the Gauss hypergeometric distribution and study several of its properties. We also derive probability density functions of the product of two independent random matrices when one of them is Gauss hypergeometric. These densities are expressed in terms of Appell’s first hypergeometric function F1 and Humbert’s confluent hypergeometric f...
متن کاملThe matrix-valued hypergeometric equation.
The hypergeometric differential equation was found by Euler [Euler, L. (1769) Opera Omnia Ser. 1, 11-13] and was extensively studied by Gauss [Gauss, C. F. (1812) Comm. Soc. Reg. Sci. II 3, 123-162], Kummer [Kummer, E. J. (1836) Riene Ang. Math. 15, 39-83; Kummer, E. J. (1836) Riene Ang. Math. 15, 127-172], and Riemann [Riemann, B. (1857) K. Gess. Wiss. 7, 1-24]. The hypergeometric function kno...
متن کاملQuantum Knizhnik-zamolodchikov Equations and Holomorphic Vector Bundles
Introduction In 1984 Knizhnik and Zamolodchikov [KZ] studied the matrix elements of intertwining operators between certain representations of affine Lie algebras and found that they satisfy a holonomic system of differential equations which are now called the Knizhnik-Zamolodchikov (KZ) equations. It turned out that the KZ equations (and hence, representation theory of affine Lie algebras) are ...
متن کامل