Minimum distance of Symplectic Grassmann codes

نویسندگان

  • Ilaria Cardinali
  • Luca Giuzzi
چکیده

In this paper we introduce Symplectic Grassmann codes, in analogy to ordinary Grassmann codes and Orthogonal Grassmann codes, as projective codes defined by symplectic Grassmannians. Lagrangian–Grassmannian codes are a special class of Symplectic Grassmann codes. We describe all the parameters of line Symplectic Grassmann codes and we provide the full weight enumerator for the Lagrangian–Grassmannian codes of rank 2 and 3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum distance of Line Orthogonal Grassmann Codes in even characteristic

In this paper we determine the minimum distance of orthogonal line-Grassmann codes for q even. The case q odd was solved in [3]. We also show that for q even all minimum weight codewords are equivalent and that symplectic line-Grassmann codes are proper subcodes of codimension 2n of the orthogonal ones.

متن کامل

Higher Weights of Grassmann Codes

Using a combinatorial approach to studying the hyperplane sections of Grassmannians, we give two new proofs of a result of Nogin concerning the higher weights of Grassmann codes. As a consequence, we obtain a bound on the number of higher dimensional subcodes of the Grassmann code having the minimum Hamming norm. We also discuss a generalization of Grassmann codes .

متن کامل

The structure of dual Grassmann codes

In this article we study the duals of Grassmann codes, certain codes coming from the Grassmannian variety. Exploiting their structure, we are able to count and classify all their minimum weight codewords. In this classification the lines lying on the Grassmannian variety play a central role. Related codes, namely the affine Grassmann codes, were introduced more recently in [1], while their dual...

متن کامل

Higher Weights of Affine Grassmann Codes and Their Duals

We consider the question of determining the higher weights or the generalized Hamming weights of affine Grassmann codes and their duals. Several initial as well as terminal higher weights of affine Grassmann codes of an arbitrary level are determined explicitly. In the case of duals of these codes, we give a formula for many initial as well as terminal higher weights. As a special case, we obta...

متن کامل

Reciprocal Degree Distance of Grassmann Graphs

Recently, Hua et al. defined a new topological index based on degrees and inverse of distances between all pairs of vertices. They named this new graph invariant as reciprocal degree distance as 1 { , } ( ) ( ( ) ( ))[ ( , )] RDD(G) = u v V G d u  d v d u v , where the d(u,v) denotes the distance between vertices u and v. In this paper, we compute this topological index for Grassmann graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1503.05456  شماره 

صفحات  -

تاریخ انتشار 2015