Detecting and Reacting on Drifts and Shifts in On-Line Data Streams with Evolving Fuzzy Systems
نویسندگان
چکیده
In this paper, we present new approaches to handle drift and shift in on-line data streams using evolving fuzzy systems (EFS), which are characterized by the fact that their structure is not fixed and not pre-determined. When dealing with drifts and shifts in data streams one needs to take into account two major issues: a) automatic detection of, and b) automatic reaction to this. To address the first problem we propose an approach based on the concepts of age and utility of fuzzy rules/clusters. The second problem itself is composed of two sub-problems concerning the influence of the drifts and shifts on: 1) the antecedent parts (fuzzy set and rule structure) and 2) the consequent parts (parameters) of the fuzzy models. To address the latter sub-problem we propose an approach that introduces a gradual forgetting strategy in the local learning process. To address the former sub-problem we introduce two alternative methods: one that is based on the evolving density-based clustering, eClustering (used in eTS); and one that is based on the automatic adaptation of the learning rate of the evolving vector quantization approach (eVQ) (used in FLEXFIS). The paper is concluded with an empirical evaluation of the impact of the proposed approaches in (on-line) real-world data sets where drifts and shifts occur. Keywords— drifts and shifts in data streams, evolving fuzzy systems, detection and reaction to drifts and shifts, age of a cluster/fuzzy rule, gradual forgetting
منابع مشابه
Categorizing Concepts for Detecting Drifts in Stream
Mining evolving data streams for concept drifts has gained importance in applications like customer behavior analysis, network intrusion detection, credit card fraud detection. Several approaches have been proposed for detection of concept drifts in the context of supervised learning in data streams. Recently, researchers have been looking into the problem of identifying concept drifts in unlab...
متن کاملSome drifts on posets and its application to fuzzy subalgebras
In this paper, given a poset $(X,leq)$, we introduce some drifts on a groupoid $(X,*)$ with respect to $(X,leq)$, and we obtain several properties of these drifts related to the notion of $Bin(X)$. We discuss some connections between fuzzy subalgebras and upward drifts.
متن کاملReservoir of Diverse Adaptive Learners and Stacking Fast Hoeffding Drift Detection Methods for Evolving Data Streams
The last decade has seen a surge of interest in adaptive learning algorithms for data stream classification, with applications ranging from predicting ozone level peaks, learning stock market indicators, to detecting computer security violations. In addition, a number of methods have been developed to detect concept drifts in these streams. Consider a scenario where we have a number of classifi...
متن کاملDesign On-Line Tunable Gain Artificial Nonlinear Controller
One of the most important challenges in nonlinear, multi-input multi-output (MIMO) and time variant systems (e.g., robot manipulator) is designing a controller with acceptable performance. This paper focused on design a new artificial non linear controller with on line tunable gain applied in the robot manipulator. The sliding mode fuzzy controller (SMFC) was designed as 7 rules Mamdani’s infer...
متن کاملDesign On-Line Tunable Gain Artificial Nonlinear Controller
One of the most important challenges in nonlinear, multi-input multi-output (MIMO) and time variant systems (e.g., robot manipulator) is designing a controller with acceptable performance. This paper focused on design a new artificial non linear controller with on line tunable gain applied in the robot manipulator. The sliding mode fuzzy controller (SMFC) was designed as 7 rules Mamdani’s infer...
متن کامل