Experience-dependent development of NMDAR1 subunit expression in the lateral geniculate nucleus.
نویسندگان
چکیده
Monocular deprivation early in postnatal development leads to anatomical and physiological changes in the lateral geniculate nucleus (LGN) and visual cortex. Many of these changes are dependent upon activation of the NMDA receptor. We have examined the role of visual experience in modifying NMDAR1 subunit expression in the LGN of animals reared with various forms of visual deprivation. Following monocular deprivation initiated either at eye opening or at the peak of the critical period, there were approximately 20% fewer NMDAR1-immunopositive neurons in the deprived laminae of the LGN. The loss of NMDAR1-immunopositive neurons was found throughout both the binocular and monocular segments of the LGN and after monocular deprivation until just 3 weeks of age. These results indicate that the loss of NMDAR1 in the LGN following monocular deprivation does not simply reflect changes in the visual cortex. The loss of NMDAR1 expression was not necessarily permanent. Initiation of binocular vision at the peak of the critical period ameliorated the effect of monocular deprivation and the introduction of a period of reverse occlusion led to a complete reversal. Taken together, the results show that the expression of the NMDAR1 subunit in the LGN can be modified by the pattern of visual experience during postnatal development.
منابع مشابه
Histological and Biochemical Alterations in the Superior Colliculus and Lateral Geniculate Nucleus of Juvenile Rats Following Prenatal Exposure to Marijuana Smoke
Prenatal exposure to marijuana has been associated with a variety of brain deficits, as Δ9-tetrahydrocannabinol (THC), its main active ingredient crosses the placenta and affects foetal brain development. Despite this effect, marijuana remains a commonly abused substance among pregnant women. In the current study, we examined the histological and biochemical changes in the superior colliculus (...
متن کاملThe development and activity-dependent expression of aggrecan in the cat visual cortex.
The Cat-301 monoclonal antibody identifies aggrecan, a chondroitin sulfate proteoglycan in the cat visual cortex and dorsal lateral geniculate nucleus (dLGN). During development, aggrecan expression increases in the dLGN with a time course that matches the decline in plasticity. Moreover, examination of tissue from selectively visually deprived cats shows that expression is activity dependent, ...
متن کاملA neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus.
The primate visual system is often divided into two channels, designated M and P, whose signals are relayed to the cerebral cortex by neurons in the magnocellular and parvicellular layers of the dorsal lateral geniculate nucleus. We have identified a third population of geniculocortical neurons in the dorsal lateral geniculate nucleus of macaques, which is immunoreactive for the alpha subunit o...
متن کاملPatchy distribution of NMDAR1 subunit immunoreactivity in developing visual cortex.
Development of ocular dominance columns is dependent on patterned retinal activity, and yet patterned activity alone cannot explain all aspects of cortical column development. Features intrinsic to the cortex have been proposed to interact with activity to guide the patterning of cortical columns (), and the NMDA receptor, because of its role in experience-dependent plasticity, is an obvious ca...
متن کاملNucleus-specific expression of GABA(A) receptor subunit mRNAs in monkey thalamus.
Expression of 10 GABAA receptor subunit genes was examined in monkey thalamus by in situ hybridization using cRNA probes specific for alpha 1, alpha 2, alpha 3, alpha 4, alpha 5, beta 1, beta 2, beta 3, gamma 1, and gamma 2 subunit mRNAs. These displayed unique hybridization on patterns with significant differences from rodents. Alpha 1, beta 2, and gamma 2 transcripts were expressed at high le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Visual neuroscience
دوره 16 4 شماره
صفحات -
تاریخ انتشار 1999