Evidence for an Upper Limit to Mitotic Spindle Length

نویسندگان

  • Martin Wühr
  • Yao Chen
  • Sophie Dumont
  • Aaron C. Groen
  • Daniel J. Needleman
  • Adrian Salic
  • Timothy J. Mitchison
چکیده

Size specification of macromolecular assemblies in the cytoplasm is poorly understood [1]. In principle, assemblies could scale with cell size or use intrinsic mechanisms. For the mitotic spindle, scaling with cell size is expected, because the function of this assembly is to physically move sister chromatids into the center of nascent daughter cells. Eggs of Xenopus laevis are among the largest cells known that cleave completely during cell division. Cell length in this organism changes by two orders of magnitude ( approximately 1200 microm to approximately 12 microm) while it develops from a fertilized egg into a tadpole [2]. We wondered whether, and how, mitotic spindle length and morphology adapt to function at these different length scales. Here, we show that spindle length increases with cell length in small cells, but in very large cells spindle length approaches an upper limit of approximately 60 microm. Further evidence for an upper limit to spindle length comes from an embryonic extract system that recapitulates mitotic spindle assembly in a test tube. We conclude that early mitotic spindle length in Xenopus laevis is uncoupled from cell length, reaching an upper bound determined by mechanisms that are intrinsic to the spindle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

There Is an Upper Limit of Chromosome Size for Normal Development of an Organism

A clearly definable upper tolerance limit for chromosome arm length has been found. As a rule we postulate that, for normal development of an organism, the longest chromosome arm must not exceed half of the average length of the spindle axis at telophase. Above this length, fertility and viability of the carrier individuals become severely impaired due to increasingly incomplete separation of t...

متن کامل

Cell Size Modulates Oscillation, Positioning and Length of Mitotic Spindles

Mitotic spindle is the main subcellular structure that accomplishes the chromosome segregation between daughter cells during cell division. However, how mitotic spindles sense and control their size, position and movement inside the cell still remains unclear. In this paper, we focus on the size effects of mitotic spindles, i.e., how cell size controls various interesting phenomena in the metap...

متن کامل

Cell-Size-Dependent Spindle Elongation in the Caenorhabditis elegans Early Embryo

Cell size is one of the critical parameters controlling the size of intracellular structures. A well-known example is the constant nuclear-to-cytoplasmic ratio (N/C ratio) [1-5]. The length of the metaphase spindle is proportional to cell size, but it has an upper limit during early embryogenesis [6]. During anaphase, the mitotic spindle elongates and delivers the centrosomes and sister chromat...

متن کامل

Physical limits on kinesin-5-mediated chromosome congression in the smallest mitotic spindles.

A characteristic feature of mitotic spindles is the congression of chromosomes near the spindle equator, a process mediated by dynamic kinetochore microtubules. A major challenge is to understand how precise, submicrometer-scale control of kinetochore micro-tubule dynamics is achieved in the smallest mitotic spindles, where the noisiness of microtubule assembly/disassembly will potentially act ...

متن کامل

Autocatalytic microtubule nucleation determines the size and mass of Xenopus laevis egg extract spindles

Regulation of size and growth is a fundamental problem in biology. A prominent example is the formation of the mitotic spindle, where protein concentration gradients around chromosomes are thought to regulate spindle growth by controlling microtubule nucleation. Previous evidence suggests that microtubules nucleate throughout the spindle structure. However, the mechanisms underlying microtubule...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2008