Interaction of an autotransporter passenger domain with BamA during its translocation across the bacterial outer membrane.
نویسندگان
چکیده
Autotransporters are a superfamily of virulence factors produced by Gram-negative bacteria consisting of a large N-terminal extracellular domain ("passenger domain") and a C-terminal beta barrel domain ("beta domain"). The mechanism by which the passenger domain is translocated across the outer membrane (OM) is unknown. Here we show that the insertion of a small linker into the passenger domain of the Escherichia coli O157:H7 autotransporter EspP effectively creates a translocation intermediate by transiently stalling translocation near the site of the insertion. Using a site-specific photocrosslinking approach, we found that residues adjacent to the stall point interact with BamA, a component of a heterooligomeric complex (Bam complex) that catalyzes OM protein assembly, and that residues closer to the EspP N terminus interact with the periplasmic chaperones SurA and Skp. The EspP-BamA interaction was short-lived and could be detected only when passenger domain translocation was stalled. These results support a model in which molecular chaperones prevent misfolding of the passenger domain before its secretion and the Bam complex catalyzes both the integration of the beta domain into the OM and the translocation of the passenger domain across the OM in a C- to N-terminal direction.
منابع مشابه
The inverse autotransporter intimin exports its passenger domain via a hairpin intermediate.
Autotransporter proteins comprise a large family of virulence factors that consist of a β-barrel translocation unit and an extracellular effector or passenger domain. The β-barrel anchors the protein to the outer membrane of Gram-negative bacteria and facilitates the transport of the passenger domain onto the cell surface. By inserting an epitope tag into the N terminus of the passenger domain ...
متن کاملSequential and spatially restricted interactions of assembly factors with an autotransporter beta domain.
Autotransporters are bacterial virulence factors that consist of an N-terminal extracellular ("passenger") domain and a C-terminal β barrel domain ("β domain") that resides in the outer membrane. Here we used an in vivo site-specific photocrosslinking approach to gain insight into the mechanism by which the β domain is integrated into the outer membrane and the relationship between β domain ass...
متن کاملReconstitution of bacterial autotransporter assembly using purified components
Autotransporters are a superfamily of bacterial virulence factors consisting of an N-terminal extracellular ('passenger') domain and a C-terminal β barrel ('β') domain that resides in the outer membrane (OM). The mechanism by which the passenger domain is secreted is poorly understood. Here we show that a conserved OM protein insertase (the Bam complex) and a molecular chaperone (SurA) are both...
متن کاملA conserved aromatic residue in the autochaperone domain of the autotransporter Hbp is critical for initiation of outer membrane translocation.
Autotransporters are bacterial virulence factors that share a common mechanism by which they are transported to the cell surface. They consist of an N-terminal passenger domain and a C-terminal β-barrel, which has been implicated in translocation of the passenger across the outer membrane (OM). The mechanism of passenger translocation and folding is still unclear but involves a conserved region...
متن کاملAn unusual signal peptide facilitates late steps in the biogenesis of a bacterial autotransporter.
Bacterial autotransporters are proteins that use a C-terminal porin-like domain to facilitate the transport of an upstream "passenger domain" across the outer membrane. Although autotransporters are translocated across the inner membrane (IM) via the Sec pathway, some of them contain exceptionally long signal peptides distinguished by a unique N-terminal sequence motif. In this study, we used t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 45 شماره
صفحات -
تاریخ انتشار 2009