Selected exonic sequencing of the AGXT gene provides a genetic diagnosis in 50% of patients with primary hyperoxaluria type 1.
نویسندگان
چکیده
BACKGROUND Definitive diagnosis of primary hyperoxaluria type 1 (PH1) requires analysis of alanine:glyoxylate aminotransferase (AGT) activity in the liver. We have previously shown that targeted screening for the 3 most common mutations in the AGXT gene (c.33_34insC, c.508G>A, and c.731T>C) can provide a molecular diagnosis in 34.5% of PH1 patients, eliminating the need for a liver biopsy. Having reviewed the distribution of all AGXT mutations, we have evaluated a diagnostic strategy that uses selected exon sequencing for the molecular diagnosis of PH1. METHODS We sequenced exons 1, 4, and 7 for 300 biopsy-confirmed PH1 patients and expressed the identified missense mutations in vitro. RESULTS Our identification of at least 1 mutation in 224 patients (75%) and 2 mutations in 149 patients increased the diagnostic sensitivity to 50%. We detected 29 kinds of sequence changes, 15 of which were novel. Four of these mutations were in exon 1 (c.2_3delinsAT, c.30_32delCC, c.122G>A, c.126delG), 7 were in exon 4 (c.447_454delGCTGCTGT, c.449T>C, c.473C>T, c.481G>A, c.481G>T, c.497T>C, c.424-2A>G), and 4 were in exon 7 (c.725insT, c.737G>A, c.757T>C, c.776 + 1G>A). The missense changes were associated with severely decreased AGT catalytic activity and negative immunoreactivity when expressed in vitro. Missense mutation c.26C>A, previously described as a pathological mutation, had activity similar to that of the wild-type enzyme. CONCLUSIONS Selective exon sequencing can allow a definitive diagnosis in 50% of PH1 patients. The test offers a rapid turnaround time (15 days) with minimal risk to the patient. Demonstration of the expression of missense changes is essential to demonstrate pathogenicity.
منابع مشابه
Primary hyperoxaluria type 1: a cluster of new mutations in exon 7 of the AGXT gene.
Primary hyperoxaluria type 1 (PH1) is a severe autosomal recessive inborn error of glyoxylate metabolism caused by deficiency of the hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase. This enzyme is encoded by the AGXT gene on chromosome 2q37.3. DNA samples from 79 PH1 patients were studied using single strand conformation polymorphism analysis to detect sequence variants, which we...
متن کاملPerformance evaluation of Sanger sequencing for the diagnosis of primary hyperoxaluria and comparison with targeted next generation sequencing
Definitive diagnosis of primary hyperoxaluria (PH) currently utilizes sequential Sanger sequencing of the AGXT, GRPHR, and HOGA1 genes but efficacy is unproven. This analysis is time-consuming, relatively expensive, and delays in diagnosis and inappropriate treatment can occur if not pursued early in the diagnostic work-up. We reviewed testing outcomes of Sanger sequencing in 200 consecutive pa...
متن کاملMutational analysis of AGXT in two Chinese families with primary hyperoxaluria type 1
BACKGROUND Primary hyperoxaluria type 1 is a rare autosomal recessive disease of glyoxylate metabolism caused by a defect in the liver-specific peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT) that leads to hyperoxaluria, recurrent urolithiasis, and nephrocalcinosis. METHODS Two unrelated patients with recurrent urolithiasis, along with members of their families, exhibited mutatio...
متن کاملSelected AGXT gene mutations analysis provides a genetic diagnosis in 28% of Tunisian patients with primary hyperoxaluria
BACKGROUND Primary hyperoxaluria type I (PH1) is a rare genetic disorder characterized by allelic and clinical heterogeneity. Four mutations (G170R, 33_34insC, I244T and F152I) account for more than 50% of PH1 alleles and form the basis for diagnostic genetic screening for PH1. We aimed to analyze the prevalence of these specific mutations causing PH1, and to provide an accurate tool for diagno...
متن کاملTwo novel AGXT mutations identified in primary hyperoxaluria type-1 and distinct morphological and structural difference in kidney stones
Primary hyperoxaluria type 1 (PH1) is a rare genetic disease characterized by excessive oxalate accumulation in plasma and urine, resulting in various phenotypes because of allelic and clinical heterogeneity. This study aimed to detect disease-associated genetic mutations in three PH1 patients in a Chinese family. All AGXT exons and 3 common polymorphisms which might synergistically interact wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical chemistry
دوره 53 7 شماره
صفحات -
تاریخ انتشار 2007