Lascar Types and Lascar Automorphisms in Abstract Elementary Classes

نویسندگان

  • Tapani Hyttinen
  • Meeri Kesälä
چکیده

We study Lascar strong types and Galois types and especially their relation to notions of type which have finite character. We define a notion of a strong type with finite character, so called Lascar type. We show that this notion is stronger than Galois type over countable sets in simple and superstable finitary AECs. Furthermore we give and example where the Galois type itself does not have finite character in such a class.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Lascar Group and the Strong Types of Hyperimaginaries

This is an expository note on the Lascar group. We also study the Lascar group over hyperimaginaries, and make some new observations on the strong types over those. In particular we show that in a simple theory, Ltp ≡ stp in real context implies that for hyperimaginary context. The Lascar group introduced by Lascar [8], and related subjects have been studied by many authors ([9][1][7][6][3] and...

متن کامل

The diameter of a Lascar strong type

We prove that a type-definable Lascar strong type has finite diameter. We answer also some other questions from [1] on Lascar strong types. We give some applications on subgroups of type-definable groups. In this paper T is a complete theory in language L and we work within a monster model C of T . For a0, a1 ∈ C let a0Θa1 iff 〈a0, a1〉 extends to an indiscernible sequence 〈an, n < ω〉. We define...

متن کامل

ar X iv : 1 70 5 . 01 88 8 v 2 [ m at h . L O ] 1 8 Ju l 2 01 7 COHERENT EXTENSION OF PARTIAL AUTOMORPHISMS , FREE AMALGAMATION , AND AUTOMORPHISM GROUPS

We give strengthened versions of the Herwig–Lascar and Hodkinson–Otto extension theorems for partial automorphisms of finite structures. Such strengthenings yield several combinatorial and group-theoretic consequences for homogeneous structures. For instance, we establish a coherent form of the extension property for partial automorphisms for certain Fräıssé classes. We deduce from these result...

متن کامل

Interpreting groups and fields in simple, finitary AECs

We prove a version of Hrushovski's 1989 results on almost orthogonal regular types in the context of simple and superstable nitary abstract elementary classes: from a certain expression of `non-orthogonality' we can conclude the existence of a group acting on the geometry obtained on the set of realizations of a regular Lascar strong type, and if we rule out the presence of a non-classical grou...

متن کامل

Extending Partial Automorphisms and the Proonite Topology on Free Groups

A class of structures C is said to have the extension property for partial automorphisms (EPPA) if, whenever C 1 and C 2 are structures in C, C 1 nite, C 1 C 2 , and p 1 , p 2 , : : :, p n are partial automorphisms of C 1 extending to automorphisms of C 2 , then there exist a nite structure C 3 in C and automorphisms 1 , 2 , : : :, n of C 3 extending the p i. We will prove that some classes of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Notre Dame Journal of Formal Logic

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2011