Transmembrane channel-like (tmc) gene regulates Drosophila larval locomotion.

نویسندگان

  • Yanmeng Guo
  • Yuping Wang
  • Wei Zhang
  • Shan Meltzer
  • Damiano Zanini
  • Yue Yu
  • Jiefu Li
  • Tong Cheng
  • Zhenhao Guo
  • Qingxiu Wang
  • Julie S Jacobs
  • Yashoda Sharma
  • Daniel F Eberl
  • Martin C Göpfert
  • Lily Yeh Jan
  • Yuh Nung Jan
  • Zuoren Wang
چکیده

Drosophila larval locomotion, which entails rhythmic body contractions, is controlled by sensory feedback from proprioceptors. The molecular mechanisms mediating this feedback are little understood. By using genetic knock-in and immunostaining, we found that the Drosophila melanogaster transmembrane channel-like (tmc) gene is expressed in the larval class I and class II dendritic arborization (da) neurons and bipolar dendrite (bd) neurons, both of which are known to provide sensory feedback for larval locomotion. Larvae with knockdown or loss of tmc function displayed reduced crawling speeds, increased head cast frequencies, and enhanced backward locomotion. Expressing Drosophila TMC or mammalian TMC1 and/or TMC2 in the tmc-positive neurons rescued these mutant phenotypes. Bending of the larval body activated the tmc-positive neurons, and in tmc mutants this bending response was impaired. This implicates TMC's roles in Drosophila proprioception and the sensory control of larval locomotion. It also provides evidence for a functional conservation between Drosophila and mammalian TMCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensing pH with TMCs

Transmembrane channel-like (TMC) proteins have been implicated in hair cell mechanotransduction, Drosophila proprioception, and sodium sensing in the nematode C. elegans. In this issue of Neuron, Wang et al. (2016) report that C. elegans TMC-1 mediates nociceptor responses to high pH, not sodium, allowing the nematode to avoid strongly alkaline environments in which most animals cannot survive.

متن کامل

Anoctamin and transmembrane channel-like proteins are evolutionarily related.

The anoctamin (ANO) family of proteins, consisting of 10 members in mammals, are transmembrane proteins that have Ca2+-activated Cl- channel activity. The transmembrane channel-like (TMC) family of proteins, consisting of 8 members in mammals, are also transmembrane proteins of which mutations are implicated in various human conditions, such as hearing loss and epidermodysplasia verruciformis. ...

متن کامل

Identification of excitatory premotor interneurons which regulate local muscle contraction during Drosophila larval locomotion

We use Drosophila larval locomotion as a model to elucidate the working principles of motor circuits. Larval locomotion is generated by rhythmic and sequential contractions of body-wall muscles from the posterior to anterior segments, which in turn are regulated by motor neurons present in the corresponding neuromeres. Motor neurons are known to receive both excitatory and inhibitory inputs, co...

متن کامل

The Basis of Food Texture Sensation in Drosophila

Food texture has enormous effects on food preferences. However, the mechanosensory cells and key molecules responsible for sensing the physical properties of food are unknown. Here, we show that akin to mammals, the fruit fly, Drosophila melanogaster, prefers food with a specific hardness or viscosity. This food texture discrimination depends upon a previously unknown multidendritic (md-L) neur...

متن کامل

Mutant human torsinA, responsible for early-onset dystonia, dominantly suppresses GTPCH expression, dopamine levels and locomotion in Drosophila melanogaster

Dystonia represents the third most common movement disorder in humans with over 20 genetic loci identified. TOR1A (DYT1), the gene responsible for the most common primary hereditary dystonia, encodes torsinA, an AAA ATPase family protein. Most cases of DYT1 dystonia are caused by a 3 bp (ΔGAG) deletion that results in the loss of a glutamic acid residue (ΔE302/303) in the carboxyl terminal regi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 26  شماره 

صفحات  -

تاریخ انتشار 2016