A c-type cytochrome and a transcriptional regulator responsible for enhanced extracellular electron transfer in Geobacter sulfurreducens revealed by adaptive evolution.
نویسندگان
چکیده
The stimulation of subsurface microbial metabolism often associated with engineered bioremediation of groundwater contaminants presents subsurface microorganisms, which are adapted for slow growth and metabolism in the subsurface, with new selective pressures. In order to better understand how Geobacter species might adapt to selective pressure for faster metal reduction in the subsurface, Geobacter sulfurreducens was put under selective pressure for rapid Fe(III) oxide reduction. The genomes of two resultant strains with rates of Fe(III) oxide reduction that were 10-fold higher than those of the parent strain were resequenced. Both strains contain either a single base-pair change or a 1 nucleotide insertion in a GEMM riboswitch upstream of GSU1761, a gene coding for the periplasmic c-type cytochrome designated PgcA. GSU1771, a gene coding for a SARP regulator, was also mutated in both strains. Introduction of either of the GEMM riboswitch mutations upstream of pgcA in the wild-type increased the abundance of pgcA transcripts, consistent with increased expression of pgcA in the adapted strains. One of the mutations doubled the rate of Fe(III) oxide reduction. Interruption of GSU1771 doubled the Fe(III) oxide reduction rate. This was associated with an increased in expression of pilA, the gene encoding the structural protein for the pili thought to function as microbial nanowires. The combination of the GSU1771 interruption with either of the pgcA mutations resulted in a strain that reduced Fe(III) as fast as the comparable adapted strain. These results suggest that the accumulation of a small number of beneficial mutations under selective pressure, similar to that potentially present during bioremediation, can greatly enhance the capacity for Fe(III) oxide reduction in G. sulfurreducens. Furthermore, the results emphasize the importance of the c-type cytochrome PgcA and pili in Fe(III) oxide reduction and demonstrate how adaptive evolution studies can aid in the elucidation of complex mechanisms, such as extracellular electron transfer.
منابع مشابه
A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA
The multi-heme, outer membrane c-type cytochrome (c-Cyt) OmcB of Geobacter sulfurreducens was previously proposed to mediate electron transfer across the outer membrane. However, the underlying mechanism has remained uncharacterized. In G. sulfurreducens, the omcB gene is part of two tandem four-gene clusters, each is predicted to encode a transcriptional factor (OrfR/OrfS), a porin-like outer ...
متن کاملGeobacter sulfurreducens Extracellular Multiheme Cytochrome PgcA Facilitates Respiration to Fe(III) Oxides But Not Electrodes
Extracellular cytochromes are hypothesized to facilitate the final steps of electron transfer between the outer membrane of the metal-reducing bacterium Geobacter sulfurreducens and solid-phase electron acceptors such as metal oxides and electrode surfaces during the course of respiration. The triheme c-type cytochrome PgcA exists in the extracellular space of G. sulfurreducens, and is one of m...
متن کاملDirect involvement of ombB, omaB, and omcB genes in extracellular reduction of Fe(III) by Geobacter sulfurreducens PCA
The tandem gene clusters orfR-ombB-omaB-omcB and orfS-ombC-omaC-omcC of the metal-reducing bacterium Geobacter sulfurreducens PCA are responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III)-citrate and ferrihydrite [a poorly crystalline Fe(III) oxide]. Each gene cluster encodes a putative transcriptional factor (OrfR/OrfS), a porin-like outer-membrane pr...
متن کاملThe periplasmic 9.6-kilodalton c-type cytochrome of Geobacter sulfurreducens is not an electron shuttle to Fe(III).
Geobacter sulfurreducens contains a 9.6-kDa c-type cytochrome that was previously proposed to serve as an extracellular electron shuttle to insoluble Fe(III) oxides. However, when the cytochrome was added to washed-cell suspensions of G. sulfurreducens it did not enhance Fe(III) oxide reduction, whereas similar concentrations of the known electron shuttle, anthraquinone-2,6-disulfonate, greatly...
متن کاملGenetic Identification of a PilT Motor in Geobacter sulfurreducens Reveals a Role for Pilus Retraction in Extracellular Electron Transfer
The metal-reducing bacterium Geobacter sulfurreducens requires the expression of conductive pili to reduce iron oxides and to wire electroactive biofilms, but the role of pilus retraction in these functions has remained elusive. Here we show that of the four PilT proteins encoded in the genome of G. sulfurreducens, PilT3 powered pilus retraction in planktonic cells of a PilT-deficient strain of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental microbiology
دوره 13 1 شماره
صفحات -
تاریخ انتشار 2011