Propagation of action potentials in squid giant axons. Repetitive firing at regions of membrane inhomogeneities

نویسندگان

  • F Ramón
  • J W Moore
چکیده

Effects of reduction in potassium conductance on impulse conduction were studied in squid giant axons. Internal perfusion of axons with tetraethylammonium (TEA) ions reduces G K and causes the duration of action potential to be increased up to 300 ms. This prolongation of action potentials does not change their conduction velocity. The shape of these propagating action potentials is similar to membrane action potentials in TEA. Axons with regions of differing membrane potassium conductances are obtained by perfusing the axon trunk and one of its two main branches with TEA after the second branch has been filled with normal perfusing solution. Although the latter is initially free of TEA, this ion diffuses in slowly. Up until a large amount of TEA has diffused into the second branch, action potentials in the two branches have very different durations. During this period, membrane regions with prolonged action potentials are a source of depolarizing current for the other, and repetitive activity may be initiated at transitional regions. After a single stimulus in either axon region, interactions between action potentials of different durations usually led to rebound, or a short burst, of action potentials. Complex interactions between two axon regions whose action potentials have different durations resembles electric activity recorded during some cardiac arrhythmias.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How Gymnodinium breve red tide toxin(s) produces repetitive firing in squid axons.

Partially purified toxin(s), GbTX, extracted from Gymnodinium breve red tide organisms elicits a spontaneous train of action potentials in the squid giant axon. The spikes have a shape similar to that in the normal seawater control except for an increase in the rate of recovery from the afterhyperpolarization. With this more rapid recovery, the membrane potential overshoots the resting potentia...

متن کامل

A simple modification of the Hodgkin and Huxley equations explains type 3 excitability in squid giant axons.

The Hodgkin and Huxley (HH) model predicts sustained repetitive firing of nerve action potentials for a suprathreshold depolarizing current pulse for as long as the pulse is applied (type 2 excitability). Squid giant axons, the preparation for which the model was intended, fire only once at the beginning of the pulse (type 3 behaviour). This discrepancy between the theory and experiments can be...

متن کامل

Control of the repetitive firing in the squid giant axon using electrical fields

In this research, the aim is to develop a repetitive firing stopper mechanism using electrical fields exerted on the fiber. The Hodgkin – Huxley nerve fiber model is used for modeling the membrane potential behavior. The repetitive firing of the nerve fiber can be stopped using approaches based on the control theory where the nonlinear Hodgkin – Huxley model is used to achieve this goal. The ef...

متن کامل

Repetitive Firing in Molluscan Giant Neurones

The somata of molluscan neurones respond with long trains of spikes to steady injected outward current. During such repetitive firing the maximum rate of rise of action potentials usually decreases as a result of inactivation of the transport mechanism for inward current. Significant inactivation of this transport system does not often change the peak level of the action potential (Magura, 1967...

متن کامل

A multiscale approach to modelling electrochemical processes occurring across the cell membrane with application to transmission of action potentials.

By application of matched asymptotic expansions, a simplified partial differential equation (PDE) model for the dynamic electrochemical processes occurring in the vicinity of a membrane, as ions selectively permeate across it, is formally derived from the Poisson-Nernst-Planck equations of electrochemistry. It is demonstrated that this simplified model reduces itself, in the limit of a long thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 73  شماره 

صفحات  -

تاریخ انتشار 1979