Induction of HIF-2alpha is dependent on mitochondrial O2 consumption in an O2-sensitive adrenomedullary chromaffin cell line.
نویسندگان
چکیده
During low O2 (hypoxia), hypoxia-inducible factor (HIF)-alpha is stabilized and translocates to the nucleus, where it regulates genes critical for survival and/or adaptation in low O2. While it appears that mitochondria play a critical role in HIF induction, controversy surrounds the underlying mechanism(s). To address this, we monitored HIF-2alpha expression and oxygen consumption in an O2-sensitive immortalized rat adrenomedullary chromaffin (MAH) cell line. Hypoxia (2-8% O2) caused a concentration- and time-dependent increase in HIF-2alpha induction, which was blocked in MAH cells with either RNA interference knockdown of the Rieske Fe-S protein, a component of complex III, or knockdown of cytochrome-c oxidase subunit of complex IV, or defective mitochondrial DNA (rho0 cells). Additionally, pharmacological inhibitors of mitochondrial complexes I, III, IV, i.e., rotenone (1 microM), myxothiazol (1 microM), antimycin A (1 microg/ml), and cyanide (1 mM), blocked HIF-2alpha induction in control MAH cells. Interestingly, the inhibitory effects of the mitochondrial inhibitors were dependent on O2 concentration such that at moderate-to-severe hypoxia (6% O2), HIF-2alpha induction was blocked by low inhibitor concentrations that were ineffective at more severe hypoxia (2% O2). Manipulation of the levels of reactive oxygen species (ROS) had no effect on HIF-2alpha induction. These data suggest that in this O2-sensitive cell line, mitochondrial O2 consumption, rather than changes in ROS, regulates HIF-2alpha during hypoxia.
منابع مشابه
Mitochondria, oxygen sensing, and the regulation of HIF-2alpha. Focus on "Induction of HIF-2alpha is dependent on mitochondrial O2 consumption in an O2-sensitive adrenomedullary chromaffin cell line".
OXYGEN GRADIENTS IN TISSUES and cells are critical signals in a range of physiological processes including development, wound healing, and adaptation to hypoxia (12). Eukaryotic cells have evolved mechanisms for sensing changes in local oxygen tension and initiation of a response designed to support the maintenance of metabolic homeostasis. Brown and Nurse (1) have investigated the role of mito...
متن کاملChronic opioids regulate KATP channel subunit Kir6.2 and carbonic anhydrase I and II expression in rat adrenal chromaffin cells via HIF-2α and protein kinase A.
At birth, asphyxial stressors such as hypoxia and hypercapnia are important physiological stimuli for adrenal catecholamine release that is critical for the proper transition to extrauterine life. We recently showed that chronic opioids blunt chemosensitivity of neonatal rat adrenomedullary chromaffin cells (AMCs) to hypoxia and hypercapnia. This blunting was attributable to increased ATP-sensi...
متن کاملThe role of reactive oxygen species in the stabilisation of hypoxia-inducible factor-1α (HIF-1α)
4 Abstract: At physiological oxygen concentrations ([O2]) hypoxia-inducible factor-1α (HIF-1α) is constantly hydroxylated and thus prepared for proteosomal degradation through the action of the prolyl hydroxylases (PHDs) (Jiang et al., 1996). In hypoxia, however, the oxygen-sensitive PHDs are inhibited and HIF-1α is stabilised. Other agents, including cytokines and growth factors have been show...
متن کاملFunctional mitochondria are required for O2 but not CO2 sensing in immortalized adrenomedullary chromaffin cells.
Catecholamine (CAT) release from adrenomedullary chromaffin cells (AMC) in response to stressors such as low O(2) (hypoxia) and elevated CO(2)/H(+) is critical during adaptation of the newborn to extrauterine life. Using a surrogate model based on a v-myc immortalized adrenal chromaffin cell line (i.e., MAH cells), combined with genetic perturbation of mitochondrial function, we tested the hypo...
متن کاملInhibition of mitochondrial respiration elevates oxygen concentration but leaves regulation of hypoxia-inducible factor (HIF) intact.
The transcription factor hypoxia-inducible factor-1 (HIF-1) is critical for erythropoietin and other factors involved in the adaptation of the organism to hypoxic stress. Conflicting results have been published regarding the role of the mitochondrial electron transport chain (ETC) in the regulation of HIF-1alpha. We assessed cellular hypoxia by pimonidazole staining and blotting of the O2-labil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 294 6 شماره
صفحات -
تاریخ انتشار 2008