Role of downregulated miR-133a-3p expression in bladder cancer: a bioinformatics study
نویسندگان
چکیده
It has been discovered that miR-133a-3p acts as a tumor suppressor in bladder cancer (BC). Nevertheless, the function of miR-133a-3p in BC remains unclarified. Thus, we carried out this study to validate the expression of miR-133a-3p in BC and provide insights into the molecular mechanism underlying it. To assess the expression of miR-133a-3p in BC, we searched eligible studies from literature and Gene expression Omnibus (GEO) to perform a meta-analysis. We also plotted the summary receiver operating characteristic (SROC) curve to evaluate the diagnostic ability of miR-133a-3p in BC. Additionally, the potential target genes of miR-133a-3p were acquired from 14 online software programs and GEO database. Protein-protein interaction (PPI) network was created to identify the hub genes. Then, Gene Ontology (GO) functional annotation analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were carried out to investigate the regulatory network of the target genes. From the meta-analysis, miR-133a-3p was remarkably downregulated in BC tissues compared with that in non-cancer tissues (standard mean difference =-3.84, 95% confidence interval =-6.99-0.29). Moreover, results from SROC suggested that miR-133a-3p exhibited the ability to diagnose BC (area under curve =0.8418). As for the bioinformatics study, 488 genes were chosen as the potential targets of miR-133a-3p in BC, among which 10 genes were defined as hub genes (all degrees >5). Further GO and KEGG pathway analysis indicated that the target genes of miR-133a-3p aggregated in specific biological process and pathways. In conclusion, miR-133a-3p possessed great diagnostic potential with its downregulation in BC, and miR-133a-3p might serve as a novel biomarker for BC.
منابع مشابه
Utility of miR-133a-3p as a diagnostic indicator for hepatocellular carcinoma: An investigation combined with GEO, TCGA, meta-analysis and bioinformatics
Increasing evidence has demonstrated that microRNA (miR)‑133a‑3p is an important regulator of hepatocellular carcinoma (HCC). In the present study, the diagnostic role of miR‑133a‑3p in HCC, and the potential functional pathways, were both explored based on publicly available data. Eligible microarray datasets were collected from NCBI Gene Expression Omnibus (GEO) database and ArrayExpress data...
متن کاملBioinformatics Identification of miRNA-mRNA Regulatory Network Contributing Primary Lung Cancer
Introduction: In clinical practice, distinguishing invasive lung tumors from primary tumors remains a challenge. With recent advances in understanding biological alterations of tumorigenesis and molecular analytic technologies, using these molecular alterations can be sensitive and tumor-specific as biomarker for the stratification of patients. In this study, the molecular network of miRNA-mRNA...
متن کاملScreening miRNAs for early diagnosis of colorectal cancer by small RNA deep sequencing and evaluation in a Chinese patient population.
PURPOSE This study aims to screen microRNAs (miRNAs), for an early diagnosis of colorectal cancer, by deep sequencing and evaluation of total miRNAs using clinical samples from a Chinese patient population. METHODS Total small RNAs from normal colonic mucosa, colonic adenomas, and colorectal cancer tissues were prepared for miRNA analysis by deep sequencing. The sequencing data were then anal...
متن کاملMicroRNA-133a-3p exerts inhibitory effects on gallbladder carcinoma via targeting RBPJ.
Gallbladder carcinoma (GBC) is the most common biliary tract malignancy with high mortality. The median survival time is 6 months, and the 5-year survival rate less than 5% for GBC patients. Thus, it is imperative to investigate the molecular mechanisms underlying the pathogenesis of GBC. miR-133a may exert anti-tumor effects on a variety of cancers. However, the role of miR-133a in the pathoge...
متن کاملBioinformatics identification of miRNA-mRNA regulatory network contributing to lung cancer invasion
Background: Over the past 15 years, significant insights have been gained into the roles of miRNAs in cancer. In various cancers, miRNAs can act as oncogenes, tumor suppressors, or control the metastasis process by modulating the expression of numerous target genes. This study is aimed at determining molecular network of miRNA-mRNA regulating lung cancer invasion, by bioinformatics approaches. ...
متن کامل