Activation of formate hydrogen-lyase via expression of uptake [NiFe]-hydrogenase in Escherichia coli BL21(DE3)
نویسندگان
چکیده
BACKGROUND Several recent studies have reported successful hydrogen (H2) production achieved via recombinant expression of uptake [NiFe]-hydrogenases from Hydrogenovibrio marinus, Rhodobacter sphaeroides, and Escherichia coli (hydrogenase-1) in E. coli BL21(DE3), a strain that lacks H2-evolving activity. However, there are some unclear points that do not support the conclusion that the recombinant hydrogenases are responsible for the in vivo H2 production. RESULTS Unlike wild-type BL21(DE3), the recombinant BL21(DE3) strains possessed formate hydrogen-lyase (FHL) activities. Through experiments using fdhF (formate dehydrogenase-H) or hycE (hydrogenase-3) mutants, it was shown that H2 production was almost exclusively dependent on FHL. Upon expression of hydrogenase, extracellular formate concentration was changed even in the mutant strains lacking FHL, indicating that formate metabolism other than FHL was also affected. The two subunits of H. marinus uptake [NiFe]-hydrogenase could activate FHL independently of each other, implying the presence of more than two different mechanisms for FHL activation in BL21(DE3). It was also revealed that the signal peptide in the small subunit was essential for activation of FHL via the small subunit. CONCLUSIONS Herein, we demonstrated that the production of H2 was indeed induced via native FHL activated by the expression of recombinant hydrogenases. The recombinant strains with [NiFe]-hydrogenase appear to be unsuitable for practical in vivo H2 production due to their relatively low H2 yields and productivities. We suggest that an improved H2-producing cell factory could be designed by constructing a well characterized and overproduced synthetic H2 pathway and fully activating the native FHL in BL21(DE3).
منابع مشابه
Metabolic Deficiences Revealed in the Biotechnologically Important Model Bacterium Escherichia coli BL21(DE3)
The Escherichia coli B strain BL21(DE3) has had a profound impact on biotechnology through its use in the production of recombinant proteins. Little is understood, however, regarding the physiology of this important E. coli strain. We show here that BL21(DE3) totally lacks activity of the four [NiFe]-hydrogenases, the three molybdenum- and selenium-containing formate dehydrogenases and molybden...
متن کاملProduction of biohydrogen by recombinant expression of [NiFe]-hydrogenase 1 in Escherichia coli
BACKGROUND Hydrogenases catalyze reversible reaction between hydrogen (H2) and proton. Inactivation of hydrogenase by exposure to oxygen is a critical limitation in biohydrogen production since strict anaerobic conditions are required. While [FeFe]-hydrogenases are irreversibly inactivated by oxygen, it was known that [NiFe]-hydrogenases are generally more tolerant to oxygen. The physiological ...
متن کاملBIOTECHNOLOGICALLY RELEVANT ENZYMES AND PROTEINS Escherichia coli hydrogenase 3 is a reversible enzyme possessing hydrogen uptake and synthesis activities
In the past, it has been difficult to discriminate between hydrogen synthesis and uptake for the three active hydrogenases in Escherichia coli (hydrogenase 1, 2, and 3); however, by combining isogenic deletion mutations from the Keio collection, we were able to see the role of hydrogenase 3. In a cell that lacks hydrogen uptake via hydrogenase 1 (hyaB) and via hydrogenase 2 (hybC), inactivation...
متن کاملImproved production of biohydrogen in light-powered Escherichia coli by co-expression of proteorhodopsin and heterologous hydrogenase
BACKGROUND Solar energy is the ultimate energy source on the Earth. The conversion of solar energy into fuels and energy sources can be an ideal solution to address energy problems. The recent discovery of proteorhodopsin in uncultured marine γ-proteobacteria has made it possible to construct recombinant Escherichia coli with the function of light-driven proton pumps. Protons that translocate a...
متن کاملInhibition of hydrogen uptake in Escherichia coli by expressing the hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803
BACKGROUND Molecular hydrogen is an environmentally-clean fuel and the reversible (bi-directional) hydrogenase of the cyanobacterium Synechocystis sp. PCC 6803 as well as the native Escherichia coli hydrogenase 3 hold great promise for hydrogen generation. These enzymes perform the simple reaction 2H+ + 2e- <--> H2 (g). RESULTS Hydrogen yields were enhanced up to 41-fold by cloning the bidire...
متن کامل