Testing of the analytical anisotropic algorithm for photon dose calculation.
نویسندگان
چکیده
The analytical anisotropic algorithm (AAA) was implemented in the Eclipse (Varian Medical Systems) treatment planning system to replace the single pencil beam (SPB) algorithm for the calculation of dose distributions for photon beams. AAA was developed to improve the dose calculation accuracy, especially in heterogeneous media. The total dose deposition is calculated as the superposition of the dose deposited by two photon sources (primary and secondary) and by an electron contamination source. The photon dose is calculated as a three-dimensional convolution of Monte-Carlo precalculated scatter kernels, scaled according to the electron density matrix. For the configuration of AAA, an optimization algorithm determines the parameters characterizing the multiple source model by optimizing the agreement between the calculated and measured depth dose curves and profiles for the basic beam data. We have combined the acceptance tests obtained in three different departments for 6, 15, and 18MV photon beams. The accuracy of AAA was tested for different field sizes (symmetric and asymmetric) for open fields, wedged fields, and static and dynamic multileaf collimation fields. Depth dose behavior at different source-to-phantom distances was investigated. Measurements were performed on homogeneous, water equivalent phantoms, on simple phantoms containing cork inhomogeneities, and on the thorax of an anthropomorphic phantom. Comparisons were made among measurements, AAA, and SPB calculations. The optimization procedure for the configuration of the algorithm was successful in reproducing the basic beam data with an overall accuracy of 3%, 1mm in the build-up region, and 1%, 1mm elsewhere. Testing of the algorithm in more clinical setups showed comparable results for depth dose curves, profiles, and monitor units of symmetric open and wedged beams below dmax. The electron contamination model was found to be suboptimal to model the dose around dmax, especially for physical wedges at smaller source to phantom distances. For the asymmetric field verification, absolute dose difference of up to 4% were observed for the most extreme asymmetries. Compared to the SPB, the penumbra modeling is considerably improved (1%, 1mm). At the interface between solid water and cork, profiles show a better agreement with AAA. Depth dose curves in the cork are substantially better with AAA than with SPB. Improvements are more pronounced for 18MV than for 6MV. Point dose measurements in the thoracic phantom are mostly within 5%. In general, we can conclude that, compared to SPB, AAA improves the accuracy of dose calculations. Particular progress was made with respect to the penumbra and low dose regions. In heterogeneous materials, improvements are substantial and more pronounced for high (18MV) than for low (6MV) energies.
منابع مشابه
Evaluation of Dose Calculation Algorithms Accuracy for Eclipse, PCRT3D, and Monaco Treatment Planning Systems Using IAEA TPS commissioning tests in a Heterogeneous Phantom
Introduction: The accuracy of dose calculation algorithm (DCA) is highly considered in the radiotherapy sequences. This study aims at assessing the accuracy of five dose calculation algorithms in tissue inhomogeneity corrections, based on the International Atomic Energy Agency TEC-DOC 1583. Material and Methods: A heterogeneous phantom was sc...
متن کاملMeasurements of Photon Beam Flattening Filter Using an Anisotropic Analytical Algorithm and Electron Beam Employing Electron Monte Carlo
Introduction: This study aimed to report the measurement of photon and electron beams to configure the Analytical Anisotropic Algorithm and Electron Monte Carlo used in clinical treatment. Material and Methods: All measurements were performed in a large water phantom using a 3-dimensional scanning system (PTW, Germany). ...
متن کاملDose Calculations for Lung Inhomogeneity in High-Energy Photon Beams and Small Beamlets: A Comparison between XiO and TiGRT Treatment Planning Systems and MCNPX Monte Carlo Code
Introduction Radiotherapy with small fields is used widely in newly developed techniques. Additionally, dose calculation accuracy of treatment planning systems in small fields plays a crucial role in treatment outcome. In the present study, dose calculation accuracy of two commercial treatment planning systems was evaluated against Monte Carlo method. Materials and Methods Siemens Once or linea...
متن کاملDosimetric accuracy of the Acuros XB and Anisotropic analytical algorithm near interface of the different density media for the small fields of a 6- MV flattening-filter-free beam
Background: This study was conducted to assess the accuracy of dose calculation near the air-phantom interface of a heterogeneous phantom for Acuros XB (AXB) and Anisotropic Analytical Algorithm (AAA) algorithm of a 6-MV flattening-filter-free beam, compared with film measurements. Materials and Methods: A phantom included air gap was ...
متن کاملUsing Varian Photon Beam Source Model for Dose Calculation of Small Fields
The use of small fi elds in radiotherapy techniques has increased substantially, in particular in stereotactic treatments and large uniform or nonuniform fi elds that are composed of small fi elds, such as for intensity-modulated radiation therapy (IMRT). This clinical perspective will focus on an experimental evaluation of the dose calculation accuracy of the anisotropic analytical algorithm (...
متن کاملEvaluation of AAA and XVMC Algorithms for Dose Calculation in Lung Equivalent Heterogeneity in Photon Fields: A Comparison of Calculated Results with Measurements
Aims: The aims of the present work are (1) to evaluate dose calculation accuracy of two commonly used algorithms for 15 MV small photon fields in a medium encompassing heterogeneity and (2) to compare them with measured results obtained from gafchromic film EBT2.Materials and Methods: Authors employed kailwood (Pinus Wallichiana) to mimic lung. Briefly, seven Kailwood plates, each measuring 25x...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 33 11 شماره
صفحات -
تاریخ انتشار 2006