Super-resolution Reconstruction of SAR Image based on Non-Local Means Denoising Combined with BP Neural Network
نویسندگان
چکیده
In this article, we propose a super-resolution method to resolve the problem of image low spatial because of the limitation of imaging devices. We make use of the strong nonlinearity mapped ability of the back-propagation neural networks(BPNN). Training sample images are got by undersampled method. The elements chose as the inputs of the BPNN are pixels referred to Non-local means(NL-Means). Making use of the self-similarity of the images, those inputs are the pixels which are pixels gained from modified NL-means which is specific for super-resolution. Besides, small change on core function of NL-means has been applied in the method we use in this article so that we can have a clearer edge in the shrunk image. Experimental results gained from the Peak Signal to Noise Ratio(PSNR) and the Equivalent Number of Look(ENL), indicate that adding the similar pixels as inputs will increase the results than not taking them into consideration. Keywords—super-resolution; NL-means; back-propagation neural network; SAR images; De-noising;
منابع مشابه
Robust Fuzzy Content Based Regularization Technique in Super Resolution Imaging
Super-resolution (SR) aims to overcome the ill-posed conditions of image acquisition. SR facilitates scene recognition from low-resolution image(s). Generally assumes that high and low resolution images share similar intrinsic geometries. Various approaches have tried to aggregate the informative details of multiple low-resolution images into a high-resolution one. In this paper, we present a n...
متن کاملDenoising Prior Driven Deep Neural Network for Image Restoration
Deep neural networks (DNNs) have shown very promising results for various image restoration (IR) tasks. However, the design of network architectures remains a major challenging for achieving further improvements. While most existing DNN-based methods solve the IR problems by directly mapping low quality images to desirable high-quality images, the observation models characterizing the image deg...
متن کاملImproving Super-resolution Techniques via Employing Blurriness Information of the Image
Super-resolution (SR) is a technique that produces a high resolution (HR) image via employing a number of low resolution (LR) images from the same scene. One of the degradations that attenuates performance of the SR is the blurriness of the input LR images. In many previous works in the SR, the blurriness of the LR images is assumed to be due to the integral effect of the image sensor of the im...
متن کاملA Deep Model for Super-resolution Enhancement from a Single Image
This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...
متن کاملSuper-Resolution Generalizing Nonlocal-Means and Kernel Regression
Super-resolution without explicit sub-pixel motion estimation is a very active subject of image reconstruction containing general motion. The Non-Local Means (NLM) method is a simple image reconstruction method without explicit motion estimation. In this paper we generalize NLM method to higher orders using kernel regression can apply to super-resolution reconstruction. The performance of the g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1612.04755 شماره
صفحات -
تاریخ انتشار 2016