A Class of Efficient Preconditioners with Multilevel Sequentially Semiseparable Matrix Structure

نویسندگان

  • Yue Qiu
  • Martin B. van Gijzen
  • Jan-Willem van Wingerden
  • Michel Verhaegen
چکیده

This paper presents a class of preconditioners for sparse systems arising from discretized partial differential equations (PDEs). In this class of preconditioners, we exploit the multilevel sequentially semiseparable (MSSS) structure of the system matrix. The off-diagonal blocks of MSSS matrices are of low-rank, which enables fast computations of linear complexity. In order to keep the low-rank property of the off-diagonal blocks, model reduction algorithm is necessary. We tested our preconditioners for 2D convection-diffusion equation, the computational results show the excellent performance of this approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DELFT UNIVERSITY OF TECHNOLOGY REPORT 13-11 Evaluation of Multilevel Sequentially Semiseparable Preconditioners on CFD Benchmark Problems Using IFISS

This paper studies a new preconditioning technique for sparse systems arising from discretized partial differential equations (PDEs) in computational fluid dynamics (CFD), which exploit the multilevel sequentially semiseparable (MSSS) structure of the system matrix. MSSS matrix computations give a data-sparse way to approximate the LU factorization of a sparse matrix from discretized PDEs in li...

متن کامل

Model Reduction in Symbolically Semi-separable Systems with Application to Pre-conditioners for 3D Sparse Systems of Equations

Preconditioned iterative solvers are considered to be one of the most promising methods for solving large and sparse linear systems. It has been shown in the literature that their impact can be fairly easily extended to semi-separable systems or even larger classes build on semi-separable ideas. In this paper, we propose and evaluate a new type of preconditioners for the class of matrices that ...

متن کامل

Parallel Multilevel Block ILU Preconditioning Techniques for Large Sparse Linear Systems

We present a class of parallel preconditioning strategies built on a multilevel block incomplete LU (ILU) factorization technique to solve large sparse linear systems on distributed memory parallel computers. The preconditioners are constructed by using the concept of block independent sets. Two algorithms for constructing block independent sets of a distributed sparse matrix are proposed. We c...

متن کامل

ILU and IUL factorizations obtained from forward and backward factored approximate inverse algorithms

In this paper‎, ‎an efficient dropping criterion has been used to compute the IUL factorization obtained from Backward Factored APproximate INVerse (BFAPINV) and ILU factorization obtained from Forward Factored APproximate INVerse (FFAPINV) algorithms‎. ‎We use different drop tolerance parameters to compute the preconditioners‎. ‎To study the effect of such a dropping on the quality of the ILU ...

متن کامل

A Class of Parallel Multilevel Sparse Approximate Inverse Preconditioners for Sparse Linear Systems

We investigate the use of the multistep successive preconditioning strategies (MSP) to construct a class of parallel multilevel sparse approximate inverse (SAI) preconditioners. We do not use independent set ordering, but a diagonal dominance based matrix permutation to build a multilevel structure. The purpose of introducing multilevel structure into SAI is to enhance the robustness of SAI for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013