On the Logarithmic Riemann-Hilbert Correspondence

نویسنده

  • Arthur Ogus
چکیده

We construct a classification of coherent sheaves with an integrable log connection, or, more precisely, sheaves with an integrable connection on a smooth log analytic space X over C. We do this in three contexts: sheaves and connections which are equivariant with respect to a torus action, germs of holomorphic connections, and finally global log analytic spaces. In each case, we construct an equivalence between the relevant category and a suitable combinatorial or topological category. In the equivariant case, the objects of the target category are graded modules endowed with a group action. We then show that every germ of a holomorphic connection has a canonical equivariant model. Global connections are classified by locally constant sheaves of modules over a (varying) sheaf of graded rings on the topological space Xlog. Each of these equivalences is compatible with tensor product and cohomology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Riemann-hilbert Correspondence for Algebraic Stacks

Using the theory ∞-categories we construct derived (dg-)categories of regular, holonomic D-modules and algebraically constructible sheaves on a complex smooth algebraic stack. We construct a natural ∞-categorical equivalence between these two categories generalising the classical Riemann-Hilbert correspondence.

متن کامل

A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function

By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...

متن کامل

Se p 20 03 MODULI OF STABLE PARABOLIC CONNECTIONS , RIEMANN - HILBERT CORRESPONDENCE AND GEOMETRY OF PAINLEVÉ EQUATION OF TYPE V I , PART

In this paper, we will give a complete geometric background for the geometry of Painlevé V I and Garnier equations. By geometric invariant theory, we will construct a smooth coarse moduli space M n (t,λ, L) of stable parabolic connection on P 1 with logarithmic poles at D(t) = t1 + · · ·+ tn as well as its natural compactification. Moreover the moduli space R(Pn,t)a of Jordan equivalence classe...

متن کامل

MODULI OF STABLE PARABOLIC CONNECTIONS, RIEMANN-HILBERT CORRESPONDENCE AND GEOMETRY OF PAINLEVÉ EQUATION OF TYPE VI, Part I

In this paper, we will give a complete geometric background for the geometry of Painlevé V I and Garnier equations. By geometric invariant theory, we will construct a smooth coarse moduli space M n (t,λ, L) of stable parabolic connection on P 1 with logarithmic poles at D(t) = t1 + · · ·+ tn as well as its natural compactification. Moreover the moduli space R(Pn,t)a of Jordan equivalence classe...

متن کامل

$L_{p;r} $ spaces: Cauchy Singular Integral, Hardy Classes and Riemann-Hilbert Problem in this Framework

In the present work the space  $L_{p;r} $ which is continuously embedded into $L_{p} $  is introduced. The corresponding Hardy spaces of analytic functions are defined as well. Some properties of the functions from these spaces are studied. The analogs of some results in the classical theory of Hardy spaces are proved for the new spaces. It is shown that the Cauchy singular integral operator is...

متن کامل

Middle convolution of Fuchsian systems and the construction of rigid differential systems

In [6], a purely algebraic analogon of Katz’ middle convolution functor (see [10]) is given. In this paper, we find an explicit Riemann-Hilbert correspondence for this functor. This leads to a construction algorithm for differential systems which correspond to rigid local systems on the punctured affine line via the Riemann-Hilbert correspondence.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003