Electronic Structure and Carrier Mobilities of Arsenene and Antimonene Nanoribbons: A First-Principle Study
نویسندگان
چکیده
Arsenene and antimonene, i.e. two-dimensional (2D) As and Sb monolayers, are the recently proposed cousins of phosphorene (Angew. Chem. Int. Ed., 54, 3112 (2015)). Through first-principle calculations, we systematically investigate electronic and transport properties of the corresponding As and Sb nanoribbons, which are cut from the arsenene and antimonene nanosheets. We find that different from the 2D systems, band features of As and Sb nanoribbons are dependent on edge shapes. All armchair As/Sb nanoribbons keep the indirect band gap feature, while the zigzag ones transfer to direct semiconductors. Quantum confinement in nanoribbons enhances the gap sizes, for which both the armchair and zigzag ones have a gap scaling rule inversely proportional to the ribbon width. Comparing to phosphorene, the large deformation potential constants in the As and Sb nanoribbons cause small carrier mobilities in the orders of magnitude of 10(1)-10(2) cm(2)/Vs. Our study demonstrates that the nanostructures of group-Vb elements would possess different electronic properties for the P, As, and Sb ones, which have diverse potential applications for nanoelectronics and nanodevices.
منابع مشابه
Performance of arsenene and antimonene double-gate MOSFETs from first principles
In the race towards high-performance ultra-scaled devices, two-dimensional materials offer an alternative paradigm thanks to their atomic thickness suppressing short-channel effects. It is thus urgent to study the most promising candidates in realistic configurations, and here we present detailed multiscale simulations of field-effect transistors based on arsenene and antimonene monolayers as c...
متن کاملInvestigation of electron correlation effects in armchair silicene nanoribbons
In this study, the electronic structure of armchair silicene nanoribbons (ASiNRs) is investigated for various widths using first-principle calculations and the framework of the density functional theory. Electronic structure of ASiNRs shows a direct band gap which is decreased with increasing the nanoribbon's width, showing an oscillatory behavior. The effective Coulomb interaction between loca...
متن کاملQuantum current modelling on tri-layer graphene nanoribbons in limit degenerate and non-degenerate
Graphene is determined by a wonderful carrier transport property and high sensitivityat the surface of a single molecule, making them great as resources used in Nano electronic use.TGN is modeled in form of three honeycomb lattices with pairs of in-equivalent sites as {A1, B1},{A2, B2}, and {A3, B3} which are located in the top, center and bottom layers, respectively. Trilayer...
متن کاملRedox-switchable devices based on functionalized graphene nanoribbons.
The possibility of tuning the electronic properties of graphene by tailoring the morphology at the nanoscale or by chemical functionalization opens interesting perspectives towards the realization of devices for nanoelectronics. Indeed, the integration of the intrinsic high carrier mobilities of graphene with functionalities that are able to react to external stimuli allows in principle the rea...
متن کاملEdge-Corrected Mean-Field Hubbard Model: Principle and Applications in 2D Materials
This work reviews the current progress of tight-binding methods and the recent edge-modified mean-field Hubbard model. Undercoordinated atoms (atoms not fully coordinated) exist at a high rate in nanomaterials with their impact overlooked. A quantum theory was proposed to calculate electronic structure of nanomaterials by incorporating bond order-length-strength (BOLS) correlation to mean-field...
متن کامل