Insulin receptor substrate 1 is phosphorylated by the serine kinase activity of phosphatidylinositol 3-kinase.
نویسندگان
چکیده
Insulin receptor substrate (IRS) 1, which is tyrosine phosphorylated in response to insulin, presents multiple serine/threonine phosphorylation sites. To search for a serine kinase activity towards IRS 1, immunoprecipitates from basal or stimulated 3T3-L1 adipocytes were used in an in vitro kinase assay. When IRS 1 was isolated from insulin-treated cells, serine phosphorylation of IRS 1 occurred, which we attribute to the kinase activity of the phosphatidylinositol 3-kinase (PI3-kinase). Importantly, in an in vitro reconstitution assay, an excess of the PI3-kinase subunit prevents this phosphorylation. Together, our results suggest that following insulin stimulation, PI3-kinase associates with IRS 1, allowing for its serine phosphorylation. This phosphorylation event could play a role in the modulation of insulin signalling.
منابع مشابه
Protein kinase C-zeta phosphorylates insulin receptor substrate-1 and impairs its ability to activate phosphatidylinositol 3-kinase in response to insulin.
Protein kinase C-zeta (PKC-zeta) is a serine/threonine kinase downstream from phosphatidylinositol 3-kinase in insulin signaling pathways. However, specific substrates for PKC-zeta that participate in the biological actions of insulin have not been reported. In the present study, we identified insulin receptor substrate-1 (IRS-1) as a novel substrate for PKC-zeta. Under in vitro conditions, wil...
متن کاملGlucose-induced phosphorylation of the insulin receptor. Functional effects and characterization of phosphorylation sites.
Elevated glucose concentrations have been reported to inhibit insulin receptor kinase activity. We studied the effects of high glucose on insulin action in Rat1 fibroblasts transfected with wild-type human insulin receptor (HIRcB) and a truncated receptor lacking the COOH-terminal 43 amino acids (delta CT). In both cell lines, 25 mM glucose impaired receptor and insulin receptor substrate-1 pho...
متن کاملIncreased insulin receptor substrate 1 serine phosphorylation and stress-activated protein kinase/c-Jun N-terminal kinase activation associated with vascular insulin resistance in spontaneously hypertensive rats.
Insulin resistance is associated with cardiovascular disease. Impaired insulin receptor substrate (IRS)-mediated signal transduction is a major contributor to insulin resistance. Recently, IRS-1 phosphorylation at serine 307 by stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) has been highlighted as a molecular event that causes insulin resistance. We investigated IRS-1-mediat...
متن کاملClinical review 125: The insulin receptor and its cellular targets.
The pleiotropic actions of insulin are mediated by a single receptor tyrosine kinase. Structure/function relationships of the insulin receptor have been conclusively established, and the early steps of insulin signaling are known in some detail. A generally accepted paradigm is that insulin receptors, acting through insulin receptor substrates, stimulate the lipid kinase activity of phosphatidy...
متن کاملPhosphorylation and Stress-Activated Protein Kinase/c-Jun N-Terminal Kinase Activation Associated With Vascular Insulin Resistance in Spontaneously Hypertensive Rats
Insulin resistance is associated with cardiovascular disease. Impaired insulin receptor substrate (IRS)–mediated signal transduction is a major contributor to insulin resistance. Recently, IRS-1 phosphorylation at serine 307 by stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) has been highlighted as a molecular event that causes insulin resistance. We investigated IRS-1–mediat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 304 ( Pt 1) شماره
صفحات -
تاریخ انتشار 1994