Resolution enhancement of field asymmetric waveform ion mobility spectrometry (FAIMS) by ion focusing
نویسندگان
چکیده
BACKGROUND Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) is a material analysis technology which develops very fast in recent years. Resolution is an important factor used to estimate the performance of this technology. With greater resolution, it's always easier to separate complex mixtures. RESULTS A method to increase the resolution of FAIMS is put forward which focuses ions before they enter the drift tube. By adding several pairs of focus electrodes loaded with DC or RF voltage in front of the FAIMS drift tube, the height of the ion beam flowing into the drift tube is decreased, which improves the resolution of the FAIMS spectrum. The effectiveness of this method is verified through SIMION simulation and experiments. Both the DC focusing mode and the AC focusing mode can improve the resolution of the FAIMS system, with the biggest increase of 37%. CONCLUSIONS Compared with other methods of improving FAIMS resolution, this method needs neither additional special gases, nor additional auxiliary equipment. It is easy to miniaturize, and can work under atmospheric pressure.
منابع مشابه
Miniaturized ultra high field asymmetric waveform ion mobility spectrometry combined with mass spectrometry for peptide analysis.
Miniaturized ultra high field asymmetric waveform ion mobility spectrometry (ultra-FAIMS) combined with mass spectrometry (MS) has been applied to the analysis of standard and tryptic peptides, derived from α-1-acid glycoprotein, using electrospray and nanoelectrospray ion sources. Singly and multiply charged peptide ions were separated in the gas phase using ultra-FAIMS and detected by ion tra...
متن کاملTo What Extent is FAIMS Beneficial in the Analysis of Proteins?
High field asymmetric waveform ion mobility spectrometry (FAIMS), also known as differential ion mobility spectrometry, is emerging as a tool for biomolecular analysis. In this article, the benefits and limitations of FAIMS for protein analysis are discussed. The principles and mechanisms of FAIMS separation of ions are described, and the differences between FAIMS and conventional ion mobility ...
متن کاملSeparation of opiate isomers using electrospray ionization and paper spray coupled to high-field asymmetric waveform ion mobility spectrometry.
One limitation in the growing field of ambient or direct analysis methods is reduced selectivity caused by the elimination of chromatographic separations prior to mass spectrometric analysis. We explored the use of high-field asymmetric waveform ion mobility spectrometry (FAIMS), an ambient pressure ion mobility technique, to separate the closely related opiate isomers of morphine, hydromorphon...
متن کاملLiquid extraction surface analysis field asymmetric waveform ion mobility spectrometry mass spectrometry for the analysis of dried blood spots.
Liquid extraction surface analysis (LESA) is a surface sampling technique that allows electrospray mass spectrometry analysis of a wide range of analytes directly from biological substrates. Here, we present LESA mass spectrometry coupled with high field asymmetric waveform ion mobility spectrometry (FAIMS) for the analysis of dried blood spots on filter paper. Incorporation of FAIMS in the wor...
متن کاملIncreasing Peak Capacity in Nontargeted Omics Applications by Combining Full Scan Field Asymmetric Waveform Ion Mobility Spectrometry with Liquid Chromatography-Mass Spectrometry.
Full scan field asymmetric waveform ion mobility spectrometry (FAIMS) combined with liquid chromatography and mass spectrometry (LC-FAIMS-MS) is shown to enhance peak capacity for omics applications. A miniaturized FAIMS device capable of rapid compensation field scanning has been incorporated into an ultrahigh performance liquid chromatography (UHPLC) and time-of-flight mass spectrometry analy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2013