Optimal Design of a Beam under Uncertain Loads

نویسندگان

  • Ismail Kucuk
  • Sarp Adali
  • Ibrahim Sadek
چکیده

Optimal design of beams subject to a combination of uncertain and deterministic transverse loads is presented using a min-max approach. The compliance of the beam is maximized to compute the worst case loading and minimized to determine the optimal cross-sectional shape. The uncertain component of the transverse load acting on the beam is not known a priori resulting in load uncertainty subject only to the constraint that its norm is finite. The minmax approach leads to robust optimal designs which are not susceptible to unexpected load variations as it occurs under operational conditions. The optimality conditions in the form of coupled differential equations are derived with respect to load and the shape functions. The resulting equations are solved analytically and the results are given for several cases to illustrate the method and to study the behavior of the optimal shapes and the worst case loadings. The efficiency of the optimal designs is computed with respect to a uniform beam under worst case loading taking the maximum deflection as the quantity for comparison.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Optimal Design of Beams Subject to Uncertain Loads

Optimality conditions are derived for the robust optimal design of beams subject to a combination of uncertain and deterministic transverse and boundary loads using a variational min-max approach. The potential energy of the beam is maximized to compute the worst case loading and minimized to determine the optimal cross-sectional shape which results in coupled nonlinear differential equations f...

متن کامل

TOPOLOGY OPTIMIZATION OF STRUCTURES UNDER TRANSIENT LOADS

In this article, an efficient methodology is presented to optimize the topology of structural systems under transient loads. Equivalent static loads concept is used to deal with transient loads and to solve an alternate quasi-static optimization problem. The maximum strain energy of the structure under the transient load during the loading interval is used as objective function. The objective f...

متن کامل

Application of linear and nonlinear vibration absorbers for the nonlinear beam under moving load

Recently, a large amount of studies have been related to nonlinear systems with multi-degrees of freedom as well as continuous systems. The purpose of this paper is to optimize passive vibration absorbers in linear and nonlinear states for an Euler-Bernoulli beam with a nonlinear vibratory behavior under concentrated moving load. The goal parameter in the optimization is maximum deflection of t...

متن کامل

Optimal Locations on Timoshenko Beam with PZT S/A for Suppressing 2Dof Vibration Based on LQR-MOPSO

Neutralization of external stimuli in dynamic systems has the major role in health, life, and function of the system. Today, dynamic systems are exposed to unpredicted factors. If the factors are not considered, it will lead to irreparable damages in energy consumption and manufacturing systems. Continuous systems such as beams, plates, shells, and panels that have many applications in differen...

متن کامل

OPTIMAL DESIGN OF COLUMNS FOR AN INTERMEDIATE MOMENT FRAME UNDER UNIAXIAL MOMENT AND AXIAL LOADS

The present study addresses optimal design of reinforced concrete (RC) columns based on equivalent equations considering deformability regulations of ACI318-14 under axial force and uniaxial bending moment. This study contrary to common approaches working with trial and error approach in design, at first presents an exact solution for intensity of longitudinal reinforcement in column section by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009