Obtaining linguistic fuzzy rule-based regression models from imprecise data with multiobjective genetic algorithms
نویسندگان
چکیده
Backfitting of fuzzy rules is an Iterative Rule Learning technique for obtaining the knowledge base of a fuzzy rule-based system in regression problems. It consists in fitting one fuzzy rule to the data, and replacing the whole training set by the residual of the approximation. The obtained rule is added to the knowledge base, and the process is repeated until the residual is zero, or near zero. Such a design has been extended to imprecise data for which the observation error is small. Nevertheless, when this error is moderate or high, the learning can stop early. In this kind of algorithms, the specificity of the residual might decrease when a new rule is added. There may happen that the residual grows so wide that it covers the value zero for all points (thus the algorithm stops), but we have not yet extracted all the information available in the dataset. Focusing on this problem, this paper is about datasets with medium to high discrepancies between the observed and the actual values of the variables, such as those containing missing values and coarsely discretized data. We will show that the quality of the iterative learning degrades in this kind of problems, because it does not make full use of all the available information. As an alternative to sequentially obtaining rules, we propose a new multiobjective Genetic Cooperative Competitive Learning (GCCL) algorithm. In our approach, each individual in the population codifies one rule, which competes in the population in terms of maximum coverage and fitting, while the individuals in the population cooperate to form the knowledge base.
منابع مشابه
Rule Base and Inference System Cooperative Learning of Mamdani Fuzzy Systems with Multiobjective Genetic Algorithms
In this paper, we present an evolutionary multiobjective learning model achieving positive synergy between the Inference System and the Rule Base in order to obtain simpler, more compact and still accurate linguistic fuzzy models by learning fuzzy inference operators together with Rule Base. The Multiobjective Evolutionary Algorithm proposed generates a set of Fuzzy Rule Based Systems with diff...
متن کاملCooperation between the Inference System and the Rule Base by Using Multiobjective Genetic Algorithms
This paper presents an evolutionary Multiobjective learning model achieving positive synergy between the Inference System and the Rule Base in order to obtain simpler and still accurate linguistic fuzzy models by learning fuzzy inference operators and applying rule selection. The Fuzzy Rule Based Systems obtained in this way, have a better trade-off between interpretability and accuracy in ling...
متن کاملObtaining fuzzy rules from interval-censored data with genetic algorithms and a random sets-based semantic of the linguistic labels
Fuzzy memberships can be understood as coverage functions of random sets. This interpretation makes sense in the context of fuzzy rule learning: a random sets-based semantic of the linguistic labels is compatible with the use of fuzzy statistics for obtaining knowledge bases from data. In particular, in this paper we formulate the learning of a fuzzy rule based classifier as a problem of statis...
متن کاملInteractive Fuzzy Modeling by Evolutionary Multiobjective Optimization with User Preference
One of the new trends in genetic fuzzy systems (GFS) is the use of evolutionary multiobjective optimization (EMO) algorithms. This is because EMO algorithms can easily handle two conflicting objectives (i.e., accuracy maximization and complexity minimization) when we design accurate and compact fuzzy rule-based systems from numerical data. Since the main advantage of fuzzy rule-based systems co...
متن کاملRule base and adaptive fuzzy operators cooperative learning of Mamdani fuzzy systems with multi-objective genetic algorithms
In this paper, we present an evolutionary multiobjective learning model achieving cooperation between the rule base and the adaptive fuzzy operators of the inference system in order to obtain simpler, more compact and still accurate linguistic fuzzy models by learning fuzzy inference adaptive operators together with rules. The multiobjective evolutionary algorithm proposed generates a set of fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft Comput.
دوره 13 شماره
صفحات -
تاریخ انتشار 2009