Transplantation of genetically modified fibroblasts expressing BDNF in adult rats with a subtotal hemisection improves specific motor and sensory functions.
نویسندگان
چکیده
OBJECTIVE We have previously reported that grafting fibroblasts genetically modified to express brain-derived neurotrophic factor (BDNF) into a subtotal cervical hemisection site that destroys the entire lateral funiculus will promote regeneration of rubrospinal axons and growth of other axons, prevent atrophy and death of axotomized red nucleus neurons, and improve forelimb use during spontaneous vertical exploration. We have now extended these studies by using additional sensorimotor tests to examine recovery. METHODS The range of tests used included those in which the intervention did not improve recovery, those in which the intervention was associated with recovery, and those that showed little deficit. The selected tasks tested both sensory and motor functions and both forelimb and forelimb function. We used the open-field locomotor rating scale (BBB), locomotion on a narrow beam, forelimb use during swimming, horizontal rope walking, and a somatosensory asymmetry (patch-removal) test. After testing during an 8-week recovery period, a second lesion was made just rostral to the initial lesion/transplant site to test the role of the transplant in recovery. The rats were then retested for a further 5 weeks after the repeated lesion. RESULTS The horizontal rope, swim, and patch-removal tests were reliably sensitive to the subtotal hemisection injury. Fb/BDNF-transplanted animals recovered motor functions on the horizontal rope-crossing test, and this recovery was abolished by a second lesion just rostral to the first lesion/transplant. In the patch-removal test, the latency to contact the affected limb was shorter in Fb/BDNF-treated rats than in the control group, and this effect was completely abolished by a second lesion. CONCLUSIONS The rope-crossing and patch-removal tests are particularly useful tasks for assessing the beneficial effects of BDNF-expressing grafts in this injury model.
منابع مشابه
Grafts of BDNF-producing fibroblasts rescue axotomized rubrospinal neurons and prevent their atrophy.
We have reported that intraspinal transplants of fibroblasts genetically modified to express brain-derived neurotrophic factor (BDNF) promote rubrospinal axon regeneration and functional recovery following subtotal cervical hemisection that completely ablated the rubrospinal tract. In the present study we examined whether these transplants could prevent cell loss and/or atrophy of axotomized Re...
متن کاملTransplants of fibroblasts genetically modified to express BDNF promote axonal regeneration from supraspinal neurons following chronic spinal cord injury.
Transplants of fibroblasts genetically modified to express BDNF (Fb/BDNF) have been shown to promote regeneration of rubrospinal axons and recovery of forelimb function when placed acutely into the injured cervical spinal cord of adult rats. Here we investigated whether Fb/BDNF cells could stimulate supraspinal axon regeneration and recovery after chronic (4 week) injury. Adult female Sprague-D...
متن کاملTransplants of cells genetically modified to express neurotrophin-3 rescue axotomized Clarke's nucleus neurons after spinal cord hemisection in adult rats.
To test the idea that genetically engineered cells can rescue axotomized neurons, we transplanted fibroblasts and immortalized neural stem cells (NSCs) modified to express neurotrophic factors into the injured spinal cord. The neurotrophin-3 (NT-3) or nerve growth factor (NGF) transgene was introduced into these cells using recombinant retroviral vectors containing an internal ribosome entry si...
متن کاملTransplantation of genetically modified cells contributes to repair and recovery from spinal injury.
The effects of transplantation of fibroblasts genetically modified to produce brain derived neurotrophin factor (Fb/BDNF) on rescue of axotomized neurons, axonal growth and recovery of function was tested in a lateral funiculus lesion model in adult rats. Operated control animals included those in which the lesion was filled with gelfoam implant (Hx) and those in which the cavity was filled wit...
متن کاملTransplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons and recovery of forelimb function.
Adult mammalian CNS neurons do not normally regenerate their severed axons. This failure has been attributed to scar tissue and inhibitory molecules at the injury site that block the regenerating axons, a lack of trophic support for the axotomized neurons, and intrinsic neuronal changes that follow axotomy, including cell atrophy and death. We studied whether transplants of fibroblasts genetica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurorehabilitation and neural repair
دوره 15 2 شماره
صفحات -
تاریخ انتشار 2001