Characterization of an Additive Manufactured TiAl Alloy—Steel Joint Produced by Electron Beam Welding
نویسندگان
چکیده
In this work, the characterization of the assembly of a steel shaft into a γ-TiAl part for turbocharger application, obtained using Electron Beam Welding (EBW) technology with a Ni-based filler, was carried out. The Ti-48Al-2Nb-0.7Cr-0.3Si (at %) alloy part was produced by Electron Beam Melting (EBM). This additive manufacturing technology allows the production of a lightweight part with complex shapes. The replacement of Nickel-based superalloys with TiAl alloys in turbocharger automotive applications will lead to an improvement of the engine performance and a substantial reduction in fuel consumption and emission. The welding process allows a promising joint to be obtained, not affecting the TiAl microstructure. Nevertheless, it causes the formation of diffusive layers between the Ni-based filler and both steel and TiAl, with the latter side being characterized by a very complex microstructure, which was fully characterized in this paper by means of Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, and nanoindentation. The diffusive interface has a thickness of about 6 µm, and it is composed of several layers. Specifically, from the TiAl alloy side, we find a layer of Ti₃Al followed by Al₃NiTi₂ and AlNi₂Ti. Subsequently Ni becomes more predominant, with a first layer characterized by abundant carbide/boride precipitation, and a second layer characterized by Si-enrichment. Then, the chemical composition of the Ni-based filler is gradually reached.
منابع مشابه
The effect of electron beam welding parameters on the microstructural characteristics and mechanical properties of dissimilar joint between 17-4PH steel and Ti6Al4V alloy
This study aimed to investigate the effect of electron beam welding parameters on the microstructural characteristics and mechanical properties of the dissimilar joint between 17-4PH precipitation hardening stainless steel and Ti6Al4V alloy. For this purpose, the welding of these two alloys was done without an interlayer and with an interlayer of copper with a thickness of 0.8 mm. Two different...
متن کاملThe effect of electron beam welding parameters on the microstructural characteristics and mechanical properties of dissimilar joint between 17-4PH steel and Ti6Al4V alloy
This study aimed to investigate the effect of electron beam welding parameters on the microstructural characteristics and mechanical properties of the dissimilar joint between 17-4PH precipitation hardening stainless steel and Ti6Al4V alloy. For this purpose, the welding of these two alloys was done without an interlayer and with an interlayer of copper with a thickness of 0.8 mm. Two different...
متن کاملFactors Affecting Weldability Improvement of Dissimilar Welds of Aged HP Stainless Steel and Alloy 800
The microstructure of HP stainless steel in aged and aged + solution annealed conditions and solutionized alloy 800 was characterized by optical microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) equipped by EDS. All phases present in the above condition were described. The effects of solution annealing heat treatment temperature on the microstructure, te...
متن کاملJoining of TiAl to Steel by Diffusion Bonding with Ni/Ti Reactive Multilayers
Dissimilar diffusion bonds of TiAl alloy to AISI 310 stainless steel using Ni/Ti reactive multilayers were studied in this investigation. The Ni and Ti alternating layers were deposited by d.c. magnetron sputtering onto the base materials, with a bilayer thickness of 30 and 60 nm. Joining experiments were performed at 700 and 800 ̋C for 60 min under pressures of 50 and 10 MPa. The effectiveness...
متن کاملThe Weldability Evaluation of Dissimilar Welds of AISI 347 Stainless Steel to ASTM A335 Low Alloy Steel by Gastungesten Arc Welding
In the present study, the Weldability and microstructure of dissimilar welds of AISI 347austenitic stainless steel to ASTM A335 low alloy steel was investigated. For this purpose, gas tungsten arc welding process and two filler metals including ERNICr-3 and ER309L were used. After welding, the microstructure of the different zones of each joint, including weld metals, heat affected zone (HAZ) 1...
متن کامل