Murine gammaherpesvirus 68 has evolved gamma interferon and stat1-repressible promoters for the lytic switch gene 50.
نویسندگان
چکیده
Cytokines regulate viral gene expression with important consequences for viral replication and pathogenesis. Gamma interferon (IFN-gamma) is a key regulator of chronic murine gammaherpesvirus 68 (gammaHV68) infection and a potent inhibitor of gammaHV68 reactivation from latency. Macrophages are the cell type that is responsive to the IFN-gamma-mediated control of gammaHV68 reactivation; however, the molecular mechanism of this IFN-gamma action is undefined. Here we report that IFN-gamma inhibits lytic replication of gammaHV68 in primary bone marrow-derived macrophages and decreases transcript levels for the essential lytic switch gene 50. Interestingly, IFN-gamma suppresses the activity of the two known gene 50 promoters, demonstrating that an inflammatory cytokine can directly regulate the promoters for the gammaHV68 lytic switch gene. Stat1, but not IFN-alpha/beta signaling, is required for IFN-gamma action. Moreover, Stat1 deficiency increases basal gammaHV68 replication, gene 50 expression, and promoter activity. Together, these data identify IFN-gamma and Stat1 as being negative regulators of the gammaHV68 lytic cycle and raise the possibility that gammaHV68 maintains IFN-gamma/Stat1-responsive gene 50 promoters to facilitate cell-extrinsic control over the interchange between the lytic and latent cycles.
منابع مشابه
Disruption of gammaherpesvirus 68 gene 50 demonstrates that Rta is essential for virus replication.
Gammaherpesvirus pathogenesis is dependent on the ability of these viruses to establish a lifelong latent infection and the ability to reactivate from latency. Immediate-early genes of theses viruses are thought to be critical regulators of lytic replication and reactivation from latency. The gene 50-encoded Rta is the only immediate-early gene product that appears to be conserved among all cha...
متن کاملReplication and transcription activator (RTA) of murine gammaherpesvirus 68 binds to an RTA-responsive element and activates the expression of ORF18.
The replication and transcription activator (RTA), mainly encoded by open reading frame 50, is an immediate-early gene product that is conserved among all characterized gammaherpesviruses. Previous studies have demonstrated that RTA proteins of Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) can activate the promoter of many viral early lytic genes through direct or ...
متن کاملThe Rta/Orf50 transactivator proteins of the gamma-herpesviridae.
The replication and transcription activator protein, Rta, is encoded by Orf50 in Kaposi's sarcoma-associated herpesvirus (KSHV) and other known gammaherpesviruses including Epstein-Barr virus (EBV), rhesus rhadinovirus (RRV), herpesvirus saimiri (HVS), and murine herpesvirus 68 (MHV-68). Each Rta/Orf50 homologue of each gammaherpesvirus plays a pivotal role in the initiation of viral lytic gene...
متن کاملRta of murine gammaherpesvirus 68 reactivates the complete lytic cycle from latency.
Herpesviruses are characterized as having two distinct life cycle phases: lytic replication and latency. The mechanisms of latency establishment and maintenance, as well as the switch from latency to lytic replication, are poorly understood. Human gammaherpesviruses, including Epstein-Barr virus (EBV) and human herpesvirus-8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV),...
متن کاملIdentification of alternative transcripts encoding the essential murine gammaherpesvirus lytic transactivator RTA.
UNLABELLED The essential immediate early transcriptional activator RTA, encoded by gene 50, is conserved among all characterized gammaherpesviruses. Analyses of a recombinant murine gammaherpesvirus 68 (MHV68) lacking both of the known gene 50 promoters (G50DblKo) revealed that this mutant retained the ability to replicate in the simian kidney epithelial cell line Vero but not in permissive mur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 84 7 شماره
صفحات -
تاریخ انتشار 2010