Hopf Algebra Equivariant Cyclic Cohomology, K-theory and a q-Index Formula
نویسندگان
چکیده
For an algebra B coming with an action of a Hopf algebra H and a twist automorphism, we introduce equivariant twisted cyclic cohomology. In the case when the twist is implemented by a modular element in H we establish the pairing between even equivariant cyclic cohomology and equivariant K-theory for B. We then extend this formalism to compact quantum group actions and show that our cyclic cohomology is a target space for the equivariant Chern character of equivariant summable Fredholm modules. We prove an analogue of Julg’s theorem relating equivariant K-theory to ordinary K-theory of the C∗-algebra crossed product, and characterize equivariant vector bundles on quantum homogeneous spaces.
منابع مشابه
Hopf Algebra Equivariant Cyclic Cohomology, K-theory and Index Formulas
For an algebra B with an action of a Hopf algebra H we establish the pairing between equivariant cyclic cohomology and equivariant K-theory for B. We then extend this formalism to compact quantum group actions and show that equivariant cyclic cohomology is a target space for the equivariant Chern character of equivariant summable Fredholm modules. We prove an analogue of Julg’s theorem relating...
متن کاملEquivariant Cyclic Cohomology of Hopf Module Algebras
We introduce an equivariant version of cyclic cohomology for Hopf module algebras. For any H-module algebra A, where H is a Hopf algebra with S2 = idH we define the cocyclic module C ♮ H(A) and we find its relation with cyclic cohomology of crossed product algebra A ⋊ H. We define K 0 (A), the equivariant K-theory group of A, and its pairing with cyclic and periodic cyclic cohomology of C H(A).
متن کاملCyclic Cohomology of Hopf Module Algebras
We define an equivariant K0-theory for Yetter-Drinfeld algebras over a Hopf algebra with an invertible antipode. We show that there exists a pairing, generalizing Connes’ pairing, between this theory and a suitably defined Hopf algebra equivariant cyclic cohomology theory.
متن کاملHopf Algebras in Noncommutative Geometry
We give an introductory survey to the use of Hopf algebras in several problems of noncommutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic coh...
متن کاملRing structures of mod p equivariant cohomology rings and ring homomorphisms between them
In this paper, we consider a class of connected oriented (with respect to Z/p) closed G-manifolds with a non-empty finite fixed point set, each of which is G-equivariantly formal, where G = Z/p and p is an odd prime. Using localization theorem and equivariant index, we give an explicit description of the mod p equivariant cohomology ring of such a G-manifold in terms of algebra. This makes ...
متن کامل